Updated Streaming Service to efficently stream content\

\
- Earlier for each chunk, whole message (with all annotations included)
  were streamed. Leading to extremely large data length.
- Fixed to only stream new chunk.
- Updated ANSWER part to be streamed as message content (following
  Vercel's Stream Protocol)\
- Fixed yield typo
This commit is contained in:
Utkarsh-Patel-13 2025-07-18 17:43:07 -07:00
parent d5aae6b229
commit 92781e726c
4 changed files with 638 additions and 256 deletions

View file

@ -267,8 +267,13 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
streaming_service = state.streaming_service
streaming_service.only_update_terminal("🔍 Generating answer outline...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🔍 Generating answer outline..."
)
}
)
# Get configuration from runnable config
configuration = Configuration.from_runnable_config(config)
reformulated_query = state.reformulated_query
@ -276,15 +281,19 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
num_sections = configuration.num_sections
user_id = configuration.user_id
streaming_service.only_update_terminal(f"🤔 Planning research approach for: \"{user_query[:100]}...\"")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f'🤔 Planning research approach for: "{user_query[:100]}..."'
)
}
)
# Get user's strategic LLM
llm = await get_user_strategic_llm(state.db_session, user_id)
if not llm:
error_message = f"No strategic LLM configured for user {user_id}"
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
raise RuntimeError(error_message)
# Create the human message content
@ -311,8 +320,13 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
Your output MUST be valid JSON in exactly this format. Do not include any other text or explanation.
"""
streaming_service.only_update_terminal("📝 Designing structured outline with AI...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"📝 Designing structured outline with AI..."
)
}
)
# Create messages for the LLM
messages = [
@ -321,8 +335,13 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
]
# Call the LLM directly without using structured output
streaming_service.only_update_terminal("⚙️ Processing answer structure...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"⚙️ Processing answer structure..."
)
}
)
response = await llm.ainvoke(messages)
@ -344,25 +363,33 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
answer_outline = AnswerOutline(**parsed_data)
total_questions = sum(len(section.questions) for section in answer_outline.answer_outline)
streaming_service.only_update_terminal(f"✅ Successfully generated outline with {len(answer_outline.answer_outline)} sections and {total_questions} research questions!")
writer({"yeild_value": streaming_service._format_annotations()})
print(f"Successfully generated answer outline with {len(answer_outline.answer_outline)} sections")
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✅ Successfully generated outline with {len(answer_outline.answer_outline)} sections and {total_questions} research questions!"
)
}
)
print(
f"Successfully generated answer outline with {len(answer_outline.answer_outline)} sections"
)
# Return state update
return {"answer_outline": answer_outline}
else:
# If JSON structure not found, raise a clear error
error_message = f"Could not find valid JSON in LLM response. Raw response: {content}"
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
error_message = (
f"Could not find valid JSON in LLM response. Raw response: {content}"
)
writer({"yield_value": streaming_service.format_error(error_message)})
raise ValueError(error_message)
except (json.JSONDecodeError, ValueError) as e:
# Log the error and re-raise it
error_message = f"Error parsing LLM response: {str(e)}"
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
print(f"Error parsing LLM response: {str(e)}")
print(f"Raw response: {response.content}")
@ -414,8 +441,13 @@ async def fetch_relevant_documents(
if streaming_service and writer:
connector_names = [get_connector_friendly_name(connector) for connector in connectors_to_search]
connector_names_str = ", ".join(connector_names)
streaming_service.only_update_terminal(f"🔎 Starting research on {len(research_questions)} questions using {connector_names_str} data sources")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🔎 Starting research on {len(research_questions)} questions using {connector_names_str} data sources"
)
}
)
all_raw_documents = [] # Store all raw documents
all_sources = [] # Store all sources
@ -423,8 +455,13 @@ async def fetch_relevant_documents(
for i, user_query in enumerate(research_questions):
# Stream question being researched
if streaming_service and writer:
streaming_service.only_update_terminal(f"🧠 Researching question {i+1}/{len(research_questions)}: \"{user_query[:100]}...\"")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f'🧠 Researching question {i + 1}/{len(research_questions)}: "{user_query[:100]}..."'
)
}
)
# Use original research question as the query
reformulated_query = user_query
@ -435,8 +472,13 @@ async def fetch_relevant_documents(
if streaming_service and writer:
connector_emoji = get_connector_emoji(connector)
friendly_name = get_connector_friendly_name(connector)
streaming_service.only_update_terminal(f"{connector_emoji} Searching {friendly_name} for relevant information...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"{connector_emoji} Searching {friendly_name} for relevant information..."
)
}
)
try:
if connector == "YOUTUBE_VIDEO":
@ -455,8 +497,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"📹 Found {len(youtube_chunks)} YouTube chunks related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📹 Found {len(youtube_chunks)} YouTube chunks related to your query"
)
}
)
elif connector == "EXTENSION":
source_object, extension_chunks = await connector_service.search_extension(
@ -474,8 +521,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🧩 Found {len(extension_chunks)} Browser Extension chunks related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🧩 Found {len(extension_chunks)} Browser Extension chunks related to your query"
)
}
)
elif connector == "CRAWLED_URL":
source_object, crawled_urls_chunks = await connector_service.search_crawled_urls(
@ -493,8 +545,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🌐 Found {len(crawled_urls_chunks)} Web Pages chunks related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🌐 Found {len(crawled_urls_chunks)} Web Pages chunks related to your query"
)
}
)
elif connector == "FILE":
source_object, files_chunks = await connector_service.search_files(
@ -512,9 +569,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"📄 Found {len(files_chunks)} Files chunks related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📄 Found {len(files_chunks)} Files chunks related to your query"
)
}
)
elif connector == "SLACK_CONNECTOR":
source_object, slack_chunks = await connector_service.search_slack(
@ -532,8 +593,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"💬 Found {len(slack_chunks)} Slack messages related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"💬 Found {len(slack_chunks)} Slack messages related to your query"
)
}
)
elif connector == "NOTION_CONNECTOR":
source_object, notion_chunks = await connector_service.search_notion(
@ -551,8 +617,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"📘 Found {len(notion_chunks)} Notion pages/blocks related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📘 Found {len(notion_chunks)} Notion pages/blocks related to your query"
)
}
)
elif connector == "GITHUB_CONNECTOR":
source_object, github_chunks = await connector_service.search_github(
@ -570,8 +641,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🐙 Found {len(github_chunks)} GitHub files/issues related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🐙 Found {len(github_chunks)} GitHub files/issues related to your query"
)
}
)
elif connector == "LINEAR_CONNECTOR":
source_object, linear_chunks = await connector_service.search_linear(
@ -589,8 +665,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"📊 Found {len(linear_chunks)} Linear issues related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📊 Found {len(linear_chunks)} Linear issues related to your query"
)
}
)
elif connector == "TAVILY_API":
source_object, tavily_chunks = await connector_service.search_tavily(
@ -606,8 +687,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🔍 Found {len(tavily_chunks)} Web Search results related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🔍 Found {len(tavily_chunks)} Web Search results related to your query"
)
}
)
elif connector == "LINKUP_API":
if top_k > 10:
@ -628,8 +714,13 @@ async def fetch_relevant_documents(
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🔗 Found {len(linkup_chunks)} Linkup results related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🔗 Found {len(linkup_chunks)} Linkup results related to your query"
)
}
)
elif connector == "DISCORD_CONNECTOR":
source_object, discord_chunks = await connector_service.search_discord(
@ -645,9 +736,13 @@ async def fetch_relevant_documents(
all_raw_documents.extend(discord_chunks)
# Stream found document count
if streaming_service and writer:
streaming_service.only_update_terminal(f"🗨️ Found {len(discord_chunks)} Discord messages related to your query")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🗨️ Found {len(discord_chunks)} Discord messages related to your query"
)
}
)
except Exception as e:
error_message = f"Error searching connector {connector}: {str(e)}"
@ -656,8 +751,13 @@ async def fetch_relevant_documents(
# Stream error message
if streaming_service and writer:
friendly_name = get_connector_friendly_name(connector)
streaming_service.only_update_terminal(f"⚠️ Error searching {friendly_name}: {str(e)}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_error(
f"Error searching {friendly_name}: {str(e)}"
)
}
)
# Continue with other connectors on error
continue
@ -700,13 +800,18 @@ async def fetch_relevant_documents(
if streaming_service and writer:
user_source_count = len(user_selected_sources) if user_selected_sources else 0
connector_source_count = len(deduplicated_sources) - user_source_count
streaming_service.only_update_terminal(f"📚 Collected {len(deduplicated_sources)} total sources ({user_source_count} user-selected + {connector_source_count} from connectors)")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📚 Collected {len(deduplicated_sources)} total sources ({user_source_count} user-selected + {connector_source_count} from connectors)"
)
}
)
# After all sources are collected and deduplicated, stream them
if streaming_service and writer:
streaming_service.only_update_sources(deduplicated_sources)
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service._format_annotations()})
# Deduplicate raw documents based on chunk_id or content
seen_chunk_ids = set()
@ -730,8 +835,13 @@ async def fetch_relevant_documents(
# Stream info about deduplicated documents
if streaming_service and writer:
streaming_service.only_update_terminal(f"🧹 Found {len(deduplicated_docs)} unique document chunks after removing duplicates")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🧹 Found {len(deduplicated_docs)} unique document chunks after removing duplicates"
)
}
)
# Return deduplicated documents
return deduplicated_docs
@ -757,14 +867,19 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
# This is used to maintain section content while streaming multiple sections
section_contents = {}
streaming_service.only_update_terminal(f"🚀 Starting to process research sections...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🚀 Starting to process research sections..."
)
}
)
print(f"Processing sections from outline: {answer_outline is not None}")
if not answer_outline:
streaming_service.only_update_terminal("❌ Error: No answer outline was provided. Cannot generate report.", "error")
writer({"yeild_value": streaming_service._format_annotations()})
error_message = "No answer outline was provided. Cannot generate report."
writer({"yield_value": streaming_service.format_error(error_message)})
return {
"final_written_report": "No answer outline was provided. Cannot generate final report."
}
@ -775,12 +890,22 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
all_questions.extend(section.questions)
print(f"Collected {len(all_questions)} questions from all sections")
streaming_service.only_update_terminal(f"🧩 Found {len(all_questions)} research questions across {len(answer_outline.answer_outline)} sections")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🧩 Found {len(all_questions)} research questions across {len(answer_outline.answer_outline)} sections"
)
}
)
# Fetch relevant documents once for all questions
streaming_service.only_update_terminal("🔍 Searching for relevant information across all connectors...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🔍 Searching for relevant information across all connectors..."
)
}
)
if configuration.num_sections == 1:
TOP_K = 10
@ -798,8 +923,13 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
try:
# First, fetch user-selected documents if any
if configuration.document_ids_to_add_in_context:
streaming_service.only_update_terminal(f"📋 Including {len(configuration.document_ids_to_add_in_context)} user-selected documents...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📋 Including {len(configuration.document_ids_to_add_in_context)} user-selected documents..."
)
}
)
user_selected_sources, user_selected_documents = await fetch_documents_by_ids(
document_ids=configuration.document_ids_to_add_in_context,
@ -808,8 +938,13 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
)
if user_selected_documents:
streaming_service.only_update_terminal(f"✅ Successfully added {len(user_selected_documents)} user-selected documents to context")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✅ Successfully added {len(user_selected_documents)} user-selected documents to context"
)
}
)
# Create connector service using state db_session
connector_service = ConnectorService(state.db_session, user_id=configuration.user_id)
@ -831,8 +966,7 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
except Exception as e:
error_message = f"Error fetching relevant documents: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
# Log the error and continue with an empty list of documents
# This allows the process to continue, but the report might lack information
relevant_documents = []
@ -844,13 +978,23 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
print(f"Added {len(user_selected_documents)} user-selected documents for all sections")
print(f"Total documents for sections: {len(all_documents)}")
streaming_service.only_update_terminal(f"✨ Starting to draft {len(answer_outline.answer_outline)} sections using {len(all_documents)} total document chunks ({len(user_selected_documents)} user-selected + {len(relevant_documents)} connector-found)")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✨ Starting to draft {len(answer_outline.answer_outline)} sections using {len(all_documents)} total document chunks ({len(user_selected_documents)} user-selected + {len(relevant_documents)} connector-found)"
)
}
)
# Create tasks to process each section in parallel with the same document set
section_tasks = []
streaming_service.only_update_terminal("⚙️ Creating processing tasks for each section...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"⚙️ Creating processing tasks for each section..."
)
}
)
for i, section in enumerate(answer_outline.answer_outline):
if i == 0:
@ -885,14 +1029,24 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
# Run all section processing tasks in parallel
print(f"Running {len(section_tasks)} section processing tasks in parallel")
streaming_service.only_update_terminal(f"⏳ Processing {len(section_tasks)} sections simultaneously...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"⏳ Processing {len(section_tasks)} sections simultaneously..."
)
}
)
section_results = await asyncio.gather(*section_tasks, return_exceptions=True)
# Handle any exceptions in the results
streaming_service.only_update_terminal("🧵 Combining section results into final report...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🧵 Combining section results into final report..."
)
}
)
processed_results = []
for i, result in enumerate(section_results):
@ -900,8 +1054,7 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
section_title = answer_outline.answer_outline[i].section_title
error_message = f"Error processing section '{section_title}': {str(result)}"
print(error_message)
streaming_service.only_update_terminal(f"⚠️ {error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
processed_results.append(error_message)
else:
processed_results.append(result)
@ -918,11 +1071,13 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
final_written_report = "\n".join(final_report)
print(f"Generated final report with {len(final_report)} parts")
streaming_service.only_update_terminal("🎉 Final research report generated successfully!")
writer({"yeild_value": streaming_service._format_annotations()})
# Skip the final update since we've been streaming incremental updates
# The final answer from each section is already shown in the UI
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🎉 Final research report generated successfully!"
)
}
)
# Use the shared documents for further question generation
# Since all sections used the same document pool, we can use it directly
@ -969,15 +1124,25 @@ async def process_section_with_documents(
# Send status update via streaming if available
if state and state.streaming_service and writer:
state.streaming_service.only_update_terminal(f"📝 Writing section: \"{section_title}\" with {len(section_questions)} research questions")
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service.format_terminal_info_delta(
f'📝 Writing section: "{section_title}" with {len(section_questions)} research questions'
)
}
)
# Fallback if no documents found
if not documents_to_use:
print(f"No relevant documents found for section: {section_title}")
if state and state.streaming_service and writer:
state.streaming_service.only_update_terminal(f"⚠️ Warning: No relevant documents found for section: \"{section_title}\"", "warning")
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service.format_error(
f'Warning: No relevant documents found for section: "{section_title}"'
)
}
)
documents_to_use = [
{"content": f"No specific information was found for: {question}"}
@ -993,7 +1158,7 @@ async def process_section_with_documents(
"user_query": user_query,
"relevant_documents": documents_to_use,
"user_id": user_id,
"search_space_id": search_space_id
"search_space_id": search_space_id,
}
}
@ -1006,8 +1171,13 @@ async def process_section_with_documents(
# Invoke the sub-section writer graph with streaming
print(f"Invoking sub_section_writer for: {section_title}")
if state and state.streaming_service and writer:
state.streaming_service.only_update_terminal(f"🧠 Analyzing information and drafting content for section: \"{section_title}\"")
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service.format_terminal_info_delta(
f'🧠 Analyzing information and drafting content for section: "{section_title}"'
)
}
)
# Variables to track streaming state
complete_content = "" # Tracks the complete content received so far
@ -1025,7 +1195,13 @@ async def process_section_with_documents(
# Only stream if there's actual new content
if delta and state and state.streaming_service and writer:
# Update terminal with real-time progress indicator
state.streaming_service.only_update_terminal(f"✍️ Writing section {section_id+1}... ({len(complete_content.split())} words)")
writer(
{
"yield_value": state.streaming_service.format_terminal_info_delta(
f"✍️ Writing section {section_id + 1}... ({len(complete_content.split())} words)"
)
}
)
# Update section_contents with just the new delta
section_contents[section_id]["content"] += delta
@ -1045,7 +1221,11 @@ async def process_section_with_documents(
# Update answer in UI in real-time
state.streaming_service.only_update_answer(complete_answer)
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service._format_annotations()
}
)
# Set default if no content was received
if not complete_content:
@ -1054,8 +1234,13 @@ async def process_section_with_documents(
# Final terminal update
if state and state.streaming_service and writer:
state.streaming_service.only_update_terminal(f"✅ Completed section: \"{section_title}\"")
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service.format_terminal_info_delta(
f'✅ Completed section: "{section_title}"'
)
}
)
return complete_content
except Exception as e:
@ -1063,8 +1248,13 @@ async def process_section_with_documents(
# Send error update via streaming if available
if state and state.streaming_service and writer:
state.streaming_service.only_update_terminal(f"❌ Error processing section \"{section_title}\": {str(e)}", "error")
writer({"yeild_value": state.streaming_service._format_annotations()})
writer(
{
"yield_value": state.streaming_service.format_error(
f'Error processing section "{section_title}": {str(e)}'
)
}
)
return f"Error processing section: {section_title}. Details: {str(e)}"
@ -1103,15 +1293,30 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
reformulated_query = state.reformulated_query
user_query = configuration.user_query
streaming_service.only_update_terminal("🤔 Starting Q&A research workflow...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🤔 Starting Q&A research workflow..."
)
}
)
streaming_service.only_update_terminal(f"🔍 Researching: \"{user_query[:100]}...\"")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f'🔍 Researching: "{user_query[:100]}..."'
)
}
)
# Fetch relevant documents for the QNA query
streaming_service.only_update_terminal("🔍 Searching for relevant information across all connectors...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🔍 Searching for relevant information across all connectors..."
)
}
)
# Use a reasonable top_k for QNA - not too many documents to avoid overwhelming the LLM
TOP_K = 15
@ -1123,8 +1328,13 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
try:
# First, fetch user-selected documents if any
if configuration.document_ids_to_add_in_context:
streaming_service.only_update_terminal(f"📋 Including {len(configuration.document_ids_to_add_in_context)} user-selected documents...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"📋 Including {len(configuration.document_ids_to_add_in_context)} user-selected documents..."
)
}
)
user_selected_sources, user_selected_documents = await fetch_documents_by_ids(
document_ids=configuration.document_ids_to_add_in_context,
@ -1133,8 +1343,13 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
)
if user_selected_documents:
streaming_service.only_update_terminal(f"✅ Successfully added {len(user_selected_documents)} user-selected documents to context")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✅ Successfully added {len(user_selected_documents)} user-selected documents to context"
)
}
)
# Create connector service using state db_session
connector_service = ConnectorService(state.db_session, user_id=configuration.user_id)
@ -1159,8 +1374,7 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
except Exception as e:
error_message = f"Error fetching relevant documents for QNA: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
# Continue with empty documents - the QNA agent will handle this gracefully
relevant_documents = []
@ -1171,8 +1385,13 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
print(f"Added {len(user_selected_documents)} user-selected documents for QNA")
print(f"Total documents for QNA: {len(all_documents)}")
streaming_service.only_update_terminal(f"🧠 Generating comprehensive answer using {len(all_documents)} total sources ({len(user_selected_documents)} user-selected + {len(relevant_documents)} connector-found)...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"🧠 Generating comprehensive answer using {len(all_documents)} total sources ({len(user_selected_documents)} user-selected + {len(relevant_documents)} connector-found)..."
)
}
)
# Prepare configuration for the QNA agent
qna_config = {
@ -1192,8 +1411,13 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
}
try:
streaming_service.only_update_terminal("✍️ Writing comprehensive answer with citations...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"✍️ Writing comprehensive answer with citations..."
)
}
)
# Track streaming content for real-time updates
complete_content = ""
@ -1212,12 +1436,17 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
if delta:
# Update terminal with progress
word_count = len(complete_content.split())
streaming_service.only_update_terminal(f"✍️ Writing answer... ({word_count} words)")
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✍️ Writing answer... ({word_count} words)"
)
}
)
# Update the answer in real-time
answer_lines = complete_content.split("\n")
streaming_service.only_update_answer(answer_lines)
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{"yield_value": streaming_service.format_text_chunk(delta)}
)
# Capture reranked documents from QNA agent for further question generation
if "reranked_documents" in chunk:
@ -1227,8 +1456,13 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
if not complete_content:
complete_content = "I couldn't find relevant information in your knowledge base to answer this question."
streaming_service.only_update_terminal("🎉 Q&A answer generated successfully!")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🎉 Q&A answer generated successfully!"
)
}
)
# Return the final answer and captured reranked documents for further question generation
return {
@ -1239,12 +1473,9 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
except Exception as e:
error_message = f"Error generating QNA answer: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_error(error_message)})
return {
"final_written_report": f"Error generating answer: {str(e)}"
}
return {"final_written_report": f"Error generating answer: {str(e)}"}
async def generate_further_questions(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
@ -1269,19 +1500,23 @@ async def generate_further_questions(state: State, config: RunnableConfig, write
# Get reranked documents from the state (will be populated by sub-agents)
reranked_documents = getattr(state, 'reranked_documents', None) or []
streaming_service.only_update_terminal("🤔 Generating follow-up questions...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🤔 Generating follow-up questions..."
)
}
)
# Get user's fast LLM
llm = await get_user_fast_llm(state.db_session, user_id)
if not llm:
error_message = f"No fast LLM configured for user {user_id}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yield_value": streaming_service.format_error(error_message)})
# Stream empty further questions to UI
streaming_service.only_update_further_questions([])
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_further_questions_delta([])})
return {"further_questions": []}
# Format chat history for the prompt
@ -1339,8 +1574,13 @@ async def generate_further_questions(state: State, config: RunnableConfig, write
Do not include any other text or explanation. Only return the JSON.
"""
streaming_service.only_update_terminal("🧠 Analyzing conversation context to suggest relevant questions...")
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
"🧠 Analyzing conversation context to suggest relevant questions..."
)
}
)
# Create messages for the LLM
messages = [
@ -1367,46 +1607,66 @@ async def generate_further_questions(state: State, config: RunnableConfig, write
# Extract the further_questions array
further_questions = parsed_data.get("further_questions", [])
streaming_service.only_update_terminal(f"✅ Generated {len(further_questions)} contextual follow-up questions!")
writer(
{
"yield_value": streaming_service.format_terminal_info_delta(
f"✅ Generated {len(further_questions)} contextual follow-up questions!"
)
}
)
# Stream the further questions to the UI
streaming_service.only_update_further_questions(further_questions)
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{
"yield_value": streaming_service.format_further_questions_delta(
further_questions
)
}
)
print(f"Successfully generated {len(further_questions)} further questions")
return {"further_questions": further_questions}
else:
# If JSON structure not found, return empty list
error_message = "Could not find valid JSON in LLM response for further questions"
error_message = (
"Could not find valid JSON in LLM response for further questions"
)
print(error_message)
streaming_service.only_update_terminal(f"⚠️ {error_message}", "warning")
writer(
{
"yield_value": streaming_service.format_error(
f"Warning: {error_message}"
)
}
)
# Stream empty further questions to UI
streaming_service.only_update_further_questions([])
writer({"yeild_value": streaming_service._format_annotations()})
writer(
{"yield_value": streaming_service.format_further_questions_delta([])}
)
return {"further_questions": []}
except (json.JSONDecodeError, ValueError) as e:
# Log the error and return empty list
error_message = f"Error parsing further questions response: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"⚠️ {error_message}", "warning")
writer(
{"yield_value": streaming_service.format_error(f"Warning: {error_message}")}
)
# Stream empty further questions to UI
streaming_service.only_update_further_questions([])
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_further_questions_delta([])})
return {"further_questions": []}
except Exception as e:
# Handle any other errors
error_message = f"Error generating further questions: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"⚠️ {error_message}", "warning")
writer(
{"yield_value": streaming_service.format_error(f"Warning: {error_message}")}
)
# Stream empty further questions to UI
streaming_service.only_update_further_questions([])
writer({"yeild_value": streaming_service._format_annotations()})
writer({"yield_value": streaming_service.format_further_questions_delta([])})
return {"further_questions": []}

View file

@ -54,32 +54,23 @@ async def handle_chat_data(
if message['role'] == "user":
langchain_chat_history.append(HumanMessage(content=message['content']))
elif message['role'] == "assistant":
# Find the last "ANSWER" annotation specifically
answer_annotation = None
for annotation in reversed(message['annotations']):
if annotation['type'] == "ANSWER":
answer_annotation = annotation
break
langchain_chat_history.append(AIMessage(content=message['content']))
if answer_annotation:
answer_text = answer_annotation['content']
# If content is a list, join it into a single string
if isinstance(answer_text, list):
answer_text = "\n".join(answer_text)
langchain_chat_history.append(AIMessage(content=answer_text))
response = StreamingResponse(stream_connector_search_results(
response = StreamingResponse(
stream_connector_search_results(
user_query,
user.id,
search_space_id, # Already converted to int in lines 32-37
search_space_id,
session,
research_mode,
selected_connectors,
langchain_chat_history,
search_mode_str,
document_ids_to_add_in_context
))
response.headers['x-vercel-ai-data-stream'] = 'v1'
document_ids_to_add_in_context,
)
)
response.headers["x-vercel-ai-data-stream"] = "v1"
return response

View file

@ -23,17 +23,138 @@ class StreamingService:
"content": []
}
]
# It is used to send annotations to the frontend
# DEPRECATED: This sends the full annotation array every time (inefficient)
def _format_annotations(self) -> str:
"""
Format the annotations as a string
DEPRECATED: This method sends the full annotation state every time.
Use the delta formatters instead for optimal streaming.
Returns:
str: The formatted annotations string
"""
return f'8:{json.dumps(self.message_annotations)}\n'
# It is used to end Streaming
def format_terminal_info_delta(self, text: str, message_type: str = "info") -> str:
"""
Format a single terminal info message as a delta annotation
Args:
text: The terminal message text
message_type: The message type (info, error, success, etc.)
Returns:
str: The formatted annotation delta string
"""
message = {"id": self.terminal_idx, "text": text, "type": message_type}
self.terminal_idx += 1
# Update internal state for reference
self.message_annotations[0]["content"].append(message)
# Return only the delta annotation
annotation = {"type": "TERMINAL_INFO", "content": [message]}
return f"8:[{json.dumps(annotation)}]\n"
def format_sources_delta(self, sources: List[Dict[str, Any]]) -> str:
"""
Format sources as a delta annotation
Args:
sources: List of source objects
Returns:
str: The formatted annotation delta string
"""
# Update internal state
self.message_annotations[1]["content"] = sources
# Return only the delta annotation
annotation = {"type": "SOURCES", "content": sources}
return f"8:[{json.dumps(annotation)}]\n"
def format_answer_delta(self, answer_chunk: str) -> str:
"""
Format a single answer chunk as a delta annotation
Args:
answer_chunk: The new answer chunk to add
Returns:
str: The formatted annotation delta string
"""
# Update internal state by appending the chunk
if isinstance(self.message_annotations[2]["content"], list):
self.message_annotations[2]["content"].append(answer_chunk)
else:
self.message_annotations[2]["content"] = [answer_chunk]
# Return only the delta annotation with the new chunk
annotation = {"type": "ANSWER", "content": [answer_chunk]}
return f"8:[{json.dumps(annotation)}]\n"
def format_answer_annotation(self, answer_lines: List[str]) -> str:
"""
Format the complete answer as a replacement annotation
Args:
answer_lines: Complete list of answer lines
Returns:
str: The formatted annotation string
"""
# Update internal state
self.message_annotations[2]["content"] = answer_lines
# Return the full answer annotation
annotation = {"type": "ANSWER", "content": answer_lines}
return f"8:[{json.dumps(annotation)}]\n"
def format_further_questions_delta(
self, further_questions: List[Dict[str, Any]]
) -> str:
"""
Format further questions as a delta annotation
Args:
further_questions: List of further question objects
Returns:
str: The formatted annotation delta string
"""
# Update internal state
self.message_annotations[3]["content"] = further_questions
# Return only the delta annotation
annotation = {"type": "FURTHER_QUESTIONS", "content": further_questions}
return f"8:[{json.dumps(annotation)}]\n"
def format_text_chunk(self, text: str) -> str:
"""
Format a text chunk using the text stream part
Args:
text: The text chunk to stream
Returns:
str: The formatted text part string
"""
return f"0:{json.dumps(text)}\n"
def format_error(self, error_message: str) -> str:
"""
Format an error using the error stream part
Args:
error_message: The error message
Returns:
str: The formatted error part string
"""
return f"3:{json.dumps(error_message)}\n"
def format_completion(self, prompt_tokens: int = 156, completion_tokens: int = 204) -> str:
"""
Format a completion message
@ -56,7 +177,12 @@ class StreamingService:
}
return f'd:{json.dumps(completion_data)}\n'
# DEPRECATED METHODS: Keep for backward compatibility but mark as deprecated
def only_update_terminal(self, text: str, message_type: str = "info") -> str:
"""
DEPRECATED: Use format_terminal_info_delta() instead for optimal streaming
"""
self.message_annotations[0]["content"].append({
"id": self.terminal_idx,
"text": text,
@ -66,16 +192,22 @@ class StreamingService:
return self.message_annotations
def only_update_sources(self, sources: List[Dict[str, Any]]) -> str:
"""
DEPRECATED: Use format_sources_delta() instead for optimal streaming
"""
self.message_annotations[1]["content"] = sources
return self.message_annotations
def only_update_answer(self, answer: List[str]) -> str:
"""
DEPRECATED: Use format_answer_delta() or format_answer_annotation() instead for optimal streaming
"""
self.message_annotations[2]["content"] = answer
return self.message_annotations
def only_update_further_questions(self, further_questions: List[Dict[str, Any]]) -> str:
"""
Update the further questions annotation
DEPRECATED: Use format_further_questions_delta() instead for optimal streaming
Args:
further_questions: List of further question objects with id and question fields

View file

@ -83,9 +83,8 @@ async def stream_connector_search_results(
config=config,
stream_mode="custom",
):
# If the chunk contains a 'yeild_value' key, print its value
# Note: there's a typo in 'yeild_value' in the code, but we need to match it
if isinstance(chunk, dict) and 'yeild_value' in chunk:
yield chunk['yeild_value']
if isinstance(chunk, dict):
if "yield_value" in chunk:
yield chunk["yield_value"]
yield streaming_service.format_completion()