add jira to document type enum and search source connector type enum

This commit is contained in:
CREDO23 2025-07-24 11:33:38 +02:00
parent c4eab5eaba
commit 90bfec6e7d

View file

@ -2,30 +2,30 @@ from collections.abc import AsyncGenerator
from datetime import datetime, timezone
from enum import Enum
from app.config import config
from app.retriver.chunks_hybrid_search import ChucksHybridSearchRetriever
from app.retriver.documents_hybrid_search import DocumentHybridSearchRetriever
from fastapi import Depends
from pgvector.sqlalchemy import Vector
from sqlalchemy import (
ARRAY,
JSON,
TIMESTAMP,
Boolean,
Column,
Enum as SQLAlchemyEnum,
)
from sqlalchemy import Enum as SQLAlchemyEnum
from sqlalchemy import (
ForeignKey,
Integer,
JSON,
String,
Text,
text,
TIMESTAMP
)
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.ext.asyncio import AsyncSession, async_sessionmaker, create_async_engine
from sqlalchemy.orm import DeclarativeBase, Mapped, declared_attr, relationship
from app.config import config
from app.retriver.chunks_hybrid_search import ChucksHybridSearchRetriever
from app.retriver.documents_hybrid_search import DocumentHybridSearchRetriever
if config.AUTH_TYPE == "GOOGLE":
from fastapi_users.db import (
SQLAlchemyBaseOAuthAccountTableUUID,
@ -51,9 +51,11 @@ class DocumentType(str, Enum):
GITHUB_CONNECTOR = "GITHUB_CONNECTOR"
LINEAR_CONNECTOR = "LINEAR_CONNECTOR"
DISCORD_CONNECTOR = "DISCORD_CONNECTOR"
JIRA_CONNECTOR = "JIRA_CONNECTOR"
class SearchSourceConnectorType(str, Enum):
SERPER_API = "SERPER_API" # NOT IMPLEMENTED YET : DON'T REMEMBER WHY : MOST PROBABLY BECAUSE WE NEED TO CRAWL THE RESULTS RETURNED BY IT
SERPER_API = "SERPER_API" # NOT IMPLEMENTED YET : DON'T REMEMBER WHY : MOST PROBABLY BECAUSE WE NEED TO CRAWL THE RESULTS RETURNED BY IT
TAVILY_API = "TAVILY_API"
LINKUP_API = "LINKUP_API"
SLACK_CONNECTOR = "SLACK_CONNECTOR"
@ -61,13 +63,16 @@ class SearchSourceConnectorType(str, Enum):
GITHUB_CONNECTOR = "GITHUB_CONNECTOR"
LINEAR_CONNECTOR = "LINEAR_CONNECTOR"
DISCORD_CONNECTOR = "DISCORD_CONNECTOR"
JIRA_CONNECTOR = "JIRA_CONNECTOR"
class ChatType(str, Enum):
QNA = "QNA"
REPORT_GENERAL = "REPORT_GENERAL"
REPORT_DEEP = "REPORT_DEEP"
REPORT_DEEPER = "REPORT_DEEPER"
class LiteLLMProvider(str, Enum):
OPENAI = "OPENAI"
ANTHROPIC = "ANTHROPIC"
@ -92,6 +97,7 @@ class LiteLLMProvider(str, Enum):
PETALS = "PETALS"
CUSTOM = "CUSTOM"
class LogLevel(str, Enum):
DEBUG = "DEBUG"
INFO = "INFO"
@ -99,18 +105,27 @@ class LogLevel(str, Enum):
ERROR = "ERROR"
CRITICAL = "CRITICAL"
class LogStatus(str, Enum):
IN_PROGRESS = "IN_PROGRESS"
SUCCESS = "SUCCESS"
FAILED = "FAILED"
class Base(DeclarativeBase):
pass
class TimestampMixin:
@declared_attr
def created_at(cls):
return Column(TIMESTAMP(timezone=True), nullable=False, default=lambda: datetime.now(timezone.utc), index=True)
return Column(
TIMESTAMP(timezone=True),
nullable=False,
default=lambda: datetime.now(timezone.utc),
index=True,
)
class BaseModel(Base):
__abstract__ = True
@ -118,6 +133,7 @@ class BaseModel(Base):
id = Column(Integer, primary_key=True, index=True)
class Chat(BaseModel, TimestampMixin):
__tablename__ = "chats"
@ -125,73 +141,115 @@ class Chat(BaseModel, TimestampMixin):
title = Column(String, nullable=False, index=True)
initial_connectors = Column(ARRAY(String), nullable=True)
messages = Column(JSON, nullable=False)
search_space_id = Column(Integer, ForeignKey('searchspaces.id', ondelete='CASCADE'), nullable=False)
search_space = relationship('SearchSpace', back_populates='chats')
search_space_id = Column(
Integer, ForeignKey("searchspaces.id", ondelete="CASCADE"), nullable=False
)
search_space = relationship("SearchSpace", back_populates="chats")
class Document(BaseModel, TimestampMixin):
__tablename__ = "documents"
title = Column(String, nullable=False, index=True)
document_type = Column(SQLAlchemyEnum(DocumentType), nullable=False)
document_metadata = Column(JSON, nullable=True)
content = Column(Text, nullable=False)
content_hash = Column(String, nullable=False, index=True, unique=True)
embedding = Column(Vector(config.embedding_model_instance.dimension))
search_space_id = Column(Integer, ForeignKey("searchspaces.id", ondelete='CASCADE'), nullable=False)
search_space_id = Column(
Integer, ForeignKey("searchspaces.id", ondelete="CASCADE"), nullable=False
)
search_space = relationship("SearchSpace", back_populates="documents")
chunks = relationship("Chunk", back_populates="document", cascade="all, delete-orphan")
chunks = relationship(
"Chunk", back_populates="document", cascade="all, delete-orphan"
)
class Chunk(BaseModel, TimestampMixin):
__tablename__ = "chunks"
content = Column(Text, nullable=False)
embedding = Column(Vector(config.embedding_model_instance.dimension))
document_id = Column(Integer, ForeignKey("documents.id", ondelete='CASCADE'), nullable=False)
document_id = Column(
Integer, ForeignKey("documents.id", ondelete="CASCADE"), nullable=False
)
document = relationship("Document", back_populates="chunks")
class Podcast(BaseModel, TimestampMixin):
__tablename__ = "podcasts"
title = Column(String, nullable=False, index=True)
podcast_transcript = Column(JSON, nullable=False, default={})
file_location = Column(String(500), nullable=False, default="")
search_space_id = Column(Integer, ForeignKey("searchspaces.id", ondelete='CASCADE'), nullable=False)
search_space_id = Column(
Integer, ForeignKey("searchspaces.id", ondelete="CASCADE"), nullable=False
)
search_space = relationship("SearchSpace", back_populates="podcasts")
class SearchSpace(BaseModel, TimestampMixin):
__tablename__ = "searchspaces"
name = Column(String(100), nullable=False, index=True)
description = Column(String(500), nullable=True)
user_id = Column(UUID(as_uuid=True), ForeignKey("user.id", ondelete='CASCADE'), nullable=False)
user_id = Column(
UUID(as_uuid=True), ForeignKey("user.id", ondelete="CASCADE"), nullable=False
)
user = relationship("User", back_populates="search_spaces")
documents = relationship("Document", back_populates="search_space", order_by="Document.id", cascade="all, delete-orphan")
podcasts = relationship("Podcast", back_populates="search_space", order_by="Podcast.id", cascade="all, delete-orphan")
chats = relationship('Chat', back_populates='search_space', order_by='Chat.id', cascade="all, delete-orphan")
logs = relationship("Log", back_populates="search_space", order_by="Log.id", cascade="all, delete-orphan")
documents = relationship(
"Document",
back_populates="search_space",
order_by="Document.id",
cascade="all, delete-orphan",
)
podcasts = relationship(
"Podcast",
back_populates="search_space",
order_by="Podcast.id",
cascade="all, delete-orphan",
)
chats = relationship(
"Chat",
back_populates="search_space",
order_by="Chat.id",
cascade="all, delete-orphan",
)
logs = relationship(
"Log",
back_populates="search_space",
order_by="Log.id",
cascade="all, delete-orphan",
)
class SearchSourceConnector(BaseModel, TimestampMixin):
__tablename__ = "search_source_connectors"
name = Column(String(100), nullable=False, index=True)
connector_type = Column(SQLAlchemyEnum(SearchSourceConnectorType), nullable=False, unique=True)
connector_type = Column(
SQLAlchemyEnum(SearchSourceConnectorType), nullable=False, unique=True
)
is_indexable = Column(Boolean, nullable=False, default=False)
last_indexed_at = Column(TIMESTAMP(timezone=True), nullable=True)
config = Column(JSON, nullable=False)
user_id = Column(UUID(as_uuid=True), ForeignKey("user.id", ondelete='CASCADE'), nullable=False)
user_id = Column(
UUID(as_uuid=True), ForeignKey("user.id", ondelete="CASCADE"), nullable=False
)
user = relationship("User", back_populates="search_source_connectors")
class LLMConfig(BaseModel, TimestampMixin):
__tablename__ = "llm_configs"
name = Column(String(100), nullable=False, index=True)
# Provider from the enum
provider = Column(SQLAlchemyEnum(LiteLLMProvider), nullable=False)
@ -202,78 +260,142 @@ class LLMConfig(BaseModel, TimestampMixin):
# API Key should be encrypted before storing
api_key = Column(String, nullable=False)
api_base = Column(String(500), nullable=True)
# For any other parameters that litellm supports
litellm_params = Column(JSON, nullable=True, default={})
user_id = Column(UUID(as_uuid=True), ForeignKey("user.id", ondelete='CASCADE'), nullable=False)
user_id = Column(
UUID(as_uuid=True), ForeignKey("user.id", ondelete="CASCADE"), nullable=False
)
user = relationship("User", back_populates="llm_configs", foreign_keys=[user_id])
class Log(BaseModel, TimestampMixin):
__tablename__ = "logs"
level = Column(SQLAlchemyEnum(LogLevel), nullable=False, index=True)
status = Column(SQLAlchemyEnum(LogStatus), nullable=False, index=True)
message = Column(Text, nullable=False)
source = Column(String(200), nullable=True, index=True) # Service/component that generated the log
source = Column(
String(200), nullable=True, index=True
) # Service/component that generated the log
log_metadata = Column(JSON, nullable=True, default={}) # Additional context data
search_space_id = Column(Integer, ForeignKey("searchspaces.id", ondelete='CASCADE'), nullable=False)
search_space_id = Column(
Integer, ForeignKey("searchspaces.id", ondelete="CASCADE"), nullable=False
)
search_space = relationship("SearchSpace", back_populates="logs")
if config.AUTH_TYPE == "GOOGLE":
class OAuthAccount(SQLAlchemyBaseOAuthAccountTableUUID, Base):
pass
class User(SQLAlchemyBaseUserTableUUID, Base):
oauth_accounts: Mapped[list[OAuthAccount]] = relationship(
"OAuthAccount", lazy="joined"
)
search_spaces = relationship("SearchSpace", back_populates="user")
search_source_connectors = relationship("SearchSourceConnector", back_populates="user")
llm_configs = relationship("LLMConfig", back_populates="user", foreign_keys="LLMConfig.user_id", cascade="all, delete-orphan")
search_source_connectors = relationship(
"SearchSourceConnector", back_populates="user"
)
llm_configs = relationship(
"LLMConfig",
back_populates="user",
foreign_keys="LLMConfig.user_id",
cascade="all, delete-orphan",
)
long_context_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
fast_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
strategic_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
long_context_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
fast_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
strategic_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
long_context_llm = relationship(
"LLMConfig", foreign_keys=[long_context_llm_id], post_update=True
)
fast_llm = relationship(
"LLMConfig", foreign_keys=[fast_llm_id], post_update=True
)
strategic_llm = relationship(
"LLMConfig", foreign_keys=[strategic_llm_id], post_update=True
)
long_context_llm = relationship("LLMConfig", foreign_keys=[long_context_llm_id], post_update=True)
fast_llm = relationship("LLMConfig", foreign_keys=[fast_llm_id], post_update=True)
strategic_llm = relationship("LLMConfig", foreign_keys=[strategic_llm_id], post_update=True)
else:
class User(SQLAlchemyBaseUserTableUUID, Base):
search_spaces = relationship("SearchSpace", back_populates="user")
search_source_connectors = relationship("SearchSourceConnector", back_populates="user")
llm_configs = relationship("LLMConfig", back_populates="user", foreign_keys="LLMConfig.user_id", cascade="all, delete-orphan")
search_source_connectors = relationship(
"SearchSourceConnector", back_populates="user"
)
llm_configs = relationship(
"LLMConfig",
back_populates="user",
foreign_keys="LLMConfig.user_id",
cascade="all, delete-orphan",
)
long_context_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
fast_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
strategic_llm_id = Column(Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True)
long_context_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
fast_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
strategic_llm_id = Column(
Integer, ForeignKey("llm_configs.id", ondelete="SET NULL"), nullable=True
)
long_context_llm = relationship("LLMConfig", foreign_keys=[long_context_llm_id], post_update=True)
fast_llm = relationship("LLMConfig", foreign_keys=[fast_llm_id], post_update=True)
strategic_llm = relationship("LLMConfig", foreign_keys=[strategic_llm_id], post_update=True)
long_context_llm = relationship(
"LLMConfig", foreign_keys=[long_context_llm_id], post_update=True
)
fast_llm = relationship(
"LLMConfig", foreign_keys=[fast_llm_id], post_update=True
)
strategic_llm = relationship(
"LLMConfig", foreign_keys=[strategic_llm_id], post_update=True
)
engine = create_async_engine(DATABASE_URL)
async_session_maker = async_sessionmaker(engine, expire_on_commit=False)
async def setup_indexes():
async with engine.begin() as conn:
# Create indexes
# Create indexes
# Document Summary Indexes
await conn.execute(text('CREATE INDEX IF NOT EXISTS document_vector_index ON documents USING hnsw (embedding public.vector_cosine_ops)'))
await conn.execute(text('CREATE INDEX IF NOT EXISTS document_search_index ON documents USING gin (to_tsvector(\'english\', content))'))
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS document_vector_index ON documents USING hnsw (embedding public.vector_cosine_ops)"
)
)
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS document_search_index ON documents USING gin (to_tsvector('english', content))"
)
)
# Document Chuck Indexes
await conn.execute(text('CREATE INDEX IF NOT EXISTS chucks_vector_index ON chunks USING hnsw (embedding public.vector_cosine_ops)'))
await conn.execute(text('CREATE INDEX IF NOT EXISTS chucks_search_index ON chunks USING gin (to_tsvector(\'english\', content))'))
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS chucks_vector_index ON chunks USING hnsw (embedding public.vector_cosine_ops)"
)
)
await conn.execute(
text(
"CREATE INDEX IF NOT EXISTS chucks_search_index ON chunks USING gin (to_tsvector('english', content))"
)
)
async def create_db_and_tables():
async with engine.begin() as conn:
await conn.execute(text('CREATE EXTENSION IF NOT EXISTS vector'))
await conn.execute(text("CREATE EXTENSION IF NOT EXISTS vector"))
await conn.run_sync(Base.metadata.create_all)
await setup_indexes()
@ -284,14 +406,23 @@ async def get_async_session() -> AsyncGenerator[AsyncSession, None]:
if config.AUTH_TYPE == "GOOGLE":
async def get_user_db(session: AsyncSession = Depends(get_async_session)):
yield SQLAlchemyUserDatabase(session, User, OAuthAccount)
else:
async def get_user_db(session: AsyncSession = Depends(get_async_session)):
yield SQLAlchemyUserDatabase(session, User)
async def get_chucks_hybrid_search_retriever(session: AsyncSession = Depends(get_async_session)):
async def get_chucks_hybrid_search_retriever(
session: AsyncSession = Depends(get_async_session),
):
return ChucksHybridSearchRetriever(session)
async def get_documents_hybrid_search_retriever(session: AsyncSession = Depends(get_async_session)):
async def get_documents_hybrid_search_retriever(
session: AsyncSession = Depends(get_async_session),
):
return DocumentHybridSearchRetriever(session)