refactor: remove process_section function and streamline test workflow

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-04-20 00:10:23 -07:00
parent 154c5748fd
commit 7be68ebf41
2 changed files with 14 additions and 85 deletions

View file

@ -232,71 +232,7 @@ async def fetch_relevant_documents(
return deduplicated_docs
async def process_section(
section_title: str,
user_id: str,
search_space_id: int,
session_maker,
research_questions: List[str],
connectors_to_search: List[str]
) -> str:
"""
Process a single section by sending it to the sub_section_writer graph.
Args:
section_title: The title of the section
user_id: The user ID
search_space_id: The search space ID
session_maker: Factory for creating new database sessions
research_questions: List of research questions for this section
connectors_to_search: List of connectors to search
Returns:
The written section content
"""
try:
# Create a new database session for this section
async with session_maker() as db_session:
# Fetch relevant documents using all research questions for this section
relevant_documents = await fetch_relevant_documents(
research_questions=research_questions,
user_id=user_id,
search_space_id=search_space_id,
db_session=db_session,
connectors_to_search=connectors_to_search
)
# Fallback if no documents found
if not relevant_documents:
print(f"No relevant documents found for section: {section_title}")
relevant_documents = [
{"content": f"No specific information was found for: {question}"}
for question in research_questions
]
# Call the sub_section_writer graph with the appropriate config
config = {
"configurable": {
"sub_section_title": section_title,
"relevant_documents": relevant_documents,
"user_id": user_id,
"search_space_id": search_space_id
}
}
# Create the initial state with db_session
state = {"db_session": db_session}
# Invoke the sub-section writer graph
print(f"Invoking sub_section_writer for: {section_title}")
result = await sub_section_writer_graph.ainvoke(state, config)
# Return the final answer from the sub_section_writer
final_answer = result.get("final_answer", "No content was generated for this section.")
return final_answer
except Exception as e:
print(f"Error processing section '{section_title}': {str(e)}")
return f"Error processing section: {section_title}. Details: {str(e)}"
async def process_sections(state: State, config: RunnableConfig) -> Dict[str, Any]:
"""
@ -395,8 +331,7 @@ async def process_sections(state: State, config: RunnableConfig) -> Dict[str, An
# Combine the results into a final report with section titles
final_report = []
for i, (section, content) in enumerate(zip(answer_outline.answer_outline, processed_results)):
section_header = f"## {section.section_title}"
final_report.append(section_header)
# Skip adding the section header since the content already contains the title
final_report.append(content)
final_report.append("\n") # Add spacing between sections

View file

@ -31,7 +31,7 @@ from dotenv import load_dotenv
# These imports should now work with the correct path
from app.agents.researcher.graph import graph
from app.agents.researcher.state import State
from app.agents.researcher.nodes import write_answer_outline, process_sections
# Load environment variables
load_dotenv()
@ -68,31 +68,25 @@ async def run_test():
# Initialize state with database session and engine
initial_state = State(db_session=db_session, engine=engine)
# Instead of using the graph directly, let's run the nodes manually
# to track the state transitions explicitly
print("\nSTEP 1: Running write_answer_outline node...")
outline_result = await write_answer_outline(initial_state, config)
# Run the graph directly
print("\nRunning the complete researcher workflow...")
result = await graph.ainvoke(initial_state, config)
# Update the state with the outline
if "answer_outline" in outline_result:
initial_state.answer_outline = outline_result["answer_outline"]
print(f"Generated answer outline with {len(initial_state.answer_outline.answer_outline)} sections")
# Extract the answer outline for display
if "answer_outline" in result and result["answer_outline"]:
print(f"\nGenerated answer outline with {len(result['answer_outline'].answer_outline)} sections")
# Print the outline
print("\nGenerated Answer Outline:")
for section in initial_state.answer_outline.answer_outline:
for section in result["answer_outline"].answer_outline:
print(f"\nSection {section.section_id}: {section.section_title}")
print("Research Questions:")
for q in section.questions:
print(f" - {q}")
# Run the second node with the updated state
print("\nSTEP 2: Running process_sections node...")
sections_result = await process_sections(initial_state, config)
# Check if we got a final report
if "final_written_report" in sections_result:
final_report = sections_result["final_written_report"]
if "final_written_report" in result and result["final_written_report"]:
final_report = result["final_written_report"]
print("\nFinal Research Report generated successfully!")
print(f"Report length: {len(final_report)} characters")
@ -101,9 +95,9 @@ async def run_test():
print(final_report)
else:
print("\nNo final report was generated.")
print(f"Result keys: {list(sections_result.keys())}")
print(f"Available result keys: {list(result.keys())}")
return sections_result
return result
except Exception as e:
print(f"Error running researcher agent: {str(e)}")