mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-09 22:04:47 +00:00
feat: Removed Hard Dependency on Unstructured.io
- Added Llamaparse Support :)
This commit is contained in:
parent
5737ea80c0
commit
73751c0eb1
11 changed files with 402 additions and 84 deletions
|
@ -289,7 +289,7 @@ async def add_received_markdown_file_document(
|
|||
raise RuntimeError(f"Failed to process file document: {str(e)}")
|
||||
|
||||
|
||||
async def add_received_file_document(
|
||||
async def add_received_file_document_using_unstructured(
|
||||
session: AsyncSession,
|
||||
file_name: str,
|
||||
unstructured_processed_elements: List[LangChainDocument],
|
||||
|
@ -357,6 +357,83 @@ async def add_received_file_document(
|
|||
raise RuntimeError(f"Failed to process file document: {str(e)}")
|
||||
|
||||
|
||||
async def add_received_file_document_using_llamacloud(
|
||||
session: AsyncSession,
|
||||
file_name: str,
|
||||
llamacloud_markdown_document: str,
|
||||
search_space_id: int,
|
||||
) -> Optional[Document]:
|
||||
"""
|
||||
Process and store document content parsed by LlamaCloud.
|
||||
|
||||
Args:
|
||||
session: Database session
|
||||
file_name: Name of the processed file
|
||||
llamacloud_markdown_documents: List of markdown content from LlamaCloud parsing
|
||||
search_space_id: ID of the search space
|
||||
|
||||
Returns:
|
||||
Document object if successful, None if failed
|
||||
"""
|
||||
try:
|
||||
# Combine all markdown documents into one
|
||||
file_in_markdown = llamacloud_markdown_document
|
||||
|
||||
content_hash = generate_content_hash(file_in_markdown)
|
||||
|
||||
# Check if document with this content hash already exists
|
||||
existing_doc_result = await session.execute(
|
||||
select(Document).where(Document.content_hash == content_hash)
|
||||
)
|
||||
existing_document = existing_doc_result.scalars().first()
|
||||
|
||||
if existing_document:
|
||||
logging.info(f"Document with content hash {content_hash} already exists. Skipping processing.")
|
||||
return existing_document
|
||||
|
||||
# Generate summary
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance
|
||||
summary_result = await summary_chain.ainvoke({"document": file_in_markdown})
|
||||
summary_content = summary_result.content
|
||||
summary_embedding = config.embedding_model_instance.embed(summary_content)
|
||||
|
||||
# Process chunks
|
||||
chunks = [
|
||||
Chunk(
|
||||
content=chunk.text,
|
||||
embedding=config.embedding_model_instance.embed(chunk.text),
|
||||
)
|
||||
for chunk in config.chunker_instance.chunk(file_in_markdown)
|
||||
]
|
||||
|
||||
# Create and store document
|
||||
document = Document(
|
||||
search_space_id=search_space_id,
|
||||
title=file_name,
|
||||
document_type=DocumentType.FILE,
|
||||
document_metadata={
|
||||
"FILE_NAME": file_name,
|
||||
"ETL_SERVICE": "LLAMACLOUD",
|
||||
},
|
||||
content=summary_content,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
content_hash=content_hash,
|
||||
)
|
||||
|
||||
session.add(document)
|
||||
await session.commit()
|
||||
await session.refresh(document)
|
||||
|
||||
return document
|
||||
except SQLAlchemyError as db_error:
|
||||
await session.rollback()
|
||||
raise db_error
|
||||
except Exception as e:
|
||||
await session.rollback()
|
||||
raise RuntimeError(f"Failed to process file document using LlamaCloud: {str(e)}")
|
||||
|
||||
|
||||
async def add_youtube_video_document(
|
||||
session: AsyncSession, url: str, search_space_id: int
|
||||
):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue