fix issues indexing with jira connector

This commit is contained in:
CREDO23 2025-07-25 00:17:06 +02:00
parent 4984aab3f1
commit 655352fc09
4 changed files with 1262 additions and 1056 deletions

View file

@ -0,0 +1 @@
{"2d0ec64d93969318101ee479b664221b32241665":{"files":{"surfsense_web/app/dashboard/[search_space_id]/documents/(manage)/page.tsx":["k+EnkTKWK6V5ATYvtszJhNn43kI=",true]},"modified":1753395412751}}

View file

@ -252,7 +252,7 @@ class JiraConnector:
fields.append("comment")
params = {
"jql": jql,
"jql": "",
"fields": ",".join(fields),
"maxResults": 100,
"startAt": 0,

View file

@ -1,5 +1,4 @@
import asyncio
import json
import logging
from datetime import datetime, timedelta, timezone
from typing import Optional, Tuple
@ -1376,9 +1375,9 @@ async def index_linear_issues(
# Process each issue
for issue in issues:
try:
issue_id = issue.get("id")
issue_identifier = issue.get("identifier", "")
issue_title = issue.get("title", "")
issue_id = issue.get("key")
issue_identifier = issue.get("id", "")
issue_title = issue.get("key", "")
if not issue_id or not issue_title:
logger.warning(
@ -2026,11 +2025,13 @@ async def index_jira_issues(
try:
# Get the connector from the database
result = await session.execute(
select(SearchSourceConnector).where(
SearchSourceConnector.id == connector_id
select(SearchSourceConnector).filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type
== SearchSourceConnectorType.JIRA_CONNECTOR,
)
)
connector = result.scalar_one_or_none()
connector = result.scalars().first()
if not connector:
await task_logger.log_task_failure(
@ -2071,15 +2072,43 @@ async def index_jira_issues(
# Fall back to calculating dates based on last_indexed_at
calculated_end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
calculated_start_date = connector.last_indexed_at
else:
# If never indexed, go back 30 days
calculated_start_date = calculated_end_date - timedelta(days=30)
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = (
connector.last_indexed_at.replace(tzinfo=None)
if connector.last_indexed_at.tzinfo
else connector.last_indexed_at
)
start_date_str = calculated_start_date.strftime("%Y-%m-%d")
end_date_str = calculated_end_date.strftime("%Y-%m-%d")
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > calculated_end_date:
logger.warning(
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
)
calculated_start_date = calculated_end_date - timedelta(days=365)
else:
calculated_start_date = last_indexed_naive
logger.info(
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
)
else:
calculated_start_date = calculated_end_date - timedelta(
days=365
) # Use 365 days as default
logger.info(
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
)
# Use calculated dates if not provided
start_date_str = (
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
)
end_date_str = (
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
)
else:
# Use provided dates
start_date_str = start_date
end_date_str = end_date
@ -2099,8 +2128,6 @@ async def index_jira_issues(
start_date=start_date_str, end_date=end_date_str, include_comments=True
)
print(json.dumps(issues, indent=2))
if error:
logger.error(f"Failed to get Jira issues: {error}")
@ -2133,146 +2160,174 @@ async def index_jira_issues(
logger.info(f"Retrieved {len(issues)} issues from Jira API")
await task_logger.log_task_progress(
log_entry,
f"Retrieved {len(issues)} issues from Jira API",
{"stage": "processing_issues", "issues_found": len(issues)},
)
except Exception as e:
await task_logger.log_task_failure(
log_entry,
f"Error fetching Jira issues: {str(e)}",
"Fetch Error",
{"error_type": type(e).__name__},
)
logger.error(f"Error fetching Jira issues: {str(e)}", exc_info=True)
return 0, f"Error fetching Jira issues: {str(e)}"
# Process and index each issue
indexed_count = 0
documents_indexed = 0
skipped_issues = []
documents_skipped = 0
for issue in issues:
try:
issue_id = issue.get("key")
issue_identifier = issue.get("key", "")
issue_title = issue.get("id", "")
if not issue_id or not issue_title:
logger.warning(
f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
)
skipped_issues.append(
f"{issue_identifier or 'Unknown'} (missing data)"
)
documents_skipped += 1
continue
# Format the issue for better readability
formatted_issue = jira_client.format_issue(issue)
# Convert to markdown
issue_markdown = jira_client.format_issue_to_markdown(formatted_issue)
issue_content = jira_client.format_issue_to_markdown(formatted_issue)
# Create document metadata
metadata = {
"issue_key": formatted_issue.get("key", ""),
"issue_title": formatted_issue.get("title", ""),
"status": formatted_issue.get("status", ""),
"priority": formatted_issue.get("priority", ""),
"issue_type": formatted_issue.get("issue_type", ""),
"project": formatted_issue.get("project", ""),
"assignee": (
formatted_issue.get("assignee", {}).get("display_name", "")
if formatted_issue.get("assignee")
else ""
),
"reporter": formatted_issue.get("reporter", {}).get(
"display_name", ""
),
"created_at": formatted_issue.get("created_at", ""),
"updated_at": formatted_issue.get("updated_at", ""),
"comment_count": len(formatted_issue.get("comments", [])),
"connector_id": connector_id,
"source": "jira",
"base_url": jira_base_url,
}
# Generate content hash
content_hash = generate_content_hash(issue_markdown)
# Check if document already exists
existing_doc_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_doc = existing_doc_result.scalar_one_or_none()
if existing_doc:
logger.debug(
f"Document with hash {content_hash} already exists, skipping"
if not issue_content:
logger.warning(
f"Skipping issue with no content: {issue_identifier} - {issue_title}"
)
skipped_issues.append(f"{issue_identifier} (no content)")
documents_skipped += 1
continue
# Create new document
document = Document(
title=f"Jira: {formatted_issue.get('key', 'Unknown')} - {formatted_issue.get('title', 'Untitled')}",
document_type=DocumentType.JIRA_CONNECTOR,
document_metadata=metadata,
content=issue_markdown,
content_hash=content_hash,
search_space_id=search_space_id,
# Create a simple summary
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
if formatted_issue.get("description"):
summary_content += (
f"Description: {formatted_issue.get('description')}\n\n"
)
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
# Generate content hash
content_hash = generate_content_hash(issue_content, search_space_id)
# Check if document already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = (
existing_doc_by_hash_result.scalars().first()
)
# Generate embedding
embedding = await config.embedding_model_instance.get_embedding(
issue_markdown
if existing_document_by_hash:
logger.info(
f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
)
documents_skipped += 1
continue
# Generate embedding for the summary
summary_embedding = config.embedding_model_instance.embed(
summary_content
)
# Process chunks - using the full issue content with comments
chunks = [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(issue_content)
]
# Create and store new document
logger.info(
f"Creating new document for issue {issue_identifier} - {issue_title}"
)
document = Document(
search_space_id=search_space_id,
title=f"Jira - {issue_identifier}: {issue_title}",
document_type=DocumentType.JIRA_CONNECTOR,
document_metadata={
"issue_id": issue_id,
"issue_identifier": issue_identifier,
"issue_title": issue_title,
"state": formatted_issue.get("status", "Unknown"),
"comment_count": comment_count,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
},
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks,
)
document.embedding = embedding
session.add(document)
await session.flush() # Flush to get the document ID
# Create chunks for the document
chunks = await config.chunking_model_instance.chunk_document(
issue_markdown
)
for chunk_content in chunks:
chunk_embedding = (
await config.embedding_model_instance.get_embedding(
chunk_content
)
)
chunk = Chunk(
content=chunk_content,
embedding=chunk_embedding,
document_id=document.id,
)
session.add(chunk)
indexed_count += 1
logger.debug(
f"Indexed Jira issue: {formatted_issue.get('key', 'Unknown')}"
documents_indexed += 1
logger.info(
f"Successfully indexed new issue {issue_identifier} - {issue_title}"
)
except Exception as e:
logger.error(
f"Error processing Jira issue {issue.get('key', 'Unknown')}: {str(e)}",
f"Error processing issue {issue.get('identifier', 'Unknown')}: {str(e)}",
exc_info=True,
)
continue
skipped_issues.append(
f"{issue.get('identifier', 'Unknown')} (processing error)"
)
documents_skipped += 1
continue # Skip this issue and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
total_processed = documents_indexed
if update_last_indexed:
connector.last_indexed_at = datetime.now()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
# Commit all changes
await session.commit()
logger.info("Successfully committed all JIRA document changes to database")
# Update last_indexed_at timestamp
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
# Log success
await task_logger.log_task_success(
log_entry,
f"Successfully indexed {indexed_count} Jira issues",
{"issues_indexed": indexed_count},
f"Successfully completed JIRA indexing for connector {connector_id}",
{
"issues_processed": total_processed,
"documents_indexed": documents_indexed,
"documents_skipped": documents_skipped,
"skipped_issues_count": len(skipped_issues),
},
)
logger.info(f"Successfully indexed {indexed_count} Jira issues")
return indexed_count, None
logger.info(
f"JIRA indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
)
return (
total_processed,
None,
) # Return None as the error message to indicate success
except Exception as e:
except SQLAlchemyError as db_error:
await session.rollback()
await task_logger.log_task_failure(
log_entry,
f"Failed to index Jira issues: {str(e)}",
f"Database error during JIRA indexing for connector {connector_id}",
str(db_error),
{"error_type": "SQLAlchemyError"},
)
logger.error(f"Database error: {str(db_error)}", exc_info=True)
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
await task_logger.log_task_failure(
log_entry,
f"Failed to index JIRA issues for connector {connector_id}",
str(e),
{"error_type": type(e).__name__},
)
logger.error(f"Failed to index Jira issues: {str(e)}", exc_info=True)
return 0, f"Failed to index Jira issues: {str(e)}"
logger.error(f"Failed to index JIRA issues: {str(e)}", exc_info=True)
return 0, f"Failed to index JIRA issues: {str(e)}"