mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-09 22:04:47 +00:00
refactor: refactored background_tasks & indexing_tasks
This commit is contained in:
parent
356bbb86f5
commit
5aa52375c3
24 changed files with 4704 additions and 5149 deletions
242
surfsense_backend/app/tasks/document_processors/url_crawler.py
Normal file
242
surfsense_backend/app/tasks/document_processors/url_crawler.py
Normal file
|
@ -0,0 +1,242 @@
|
|||
"""
|
||||
URL crawler document processor.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import validators
|
||||
from langchain_community.document_loaders import AsyncChromiumLoader, FireCrawlLoader
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from app.config import config
|
||||
from app.db import Document, DocumentType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
md,
|
||||
)
|
||||
|
||||
|
||||
async def add_crawled_url_document(
|
||||
session: AsyncSession, url: str, search_space_id: int, user_id: str
|
||||
) -> Document | None:
|
||||
"""
|
||||
Process and store a document from a crawled URL.
|
||||
|
||||
Args:
|
||||
session: Database session
|
||||
url: URL to crawl
|
||||
search_space_id: ID of the search space
|
||||
user_id: ID of the user
|
||||
|
||||
Returns:
|
||||
Document object if successful, None if failed
|
||||
"""
|
||||
task_logger = TaskLoggingService(session, search_space_id)
|
||||
|
||||
# Log task start
|
||||
log_entry = await task_logger.log_task_start(
|
||||
task_name="crawl_url_document",
|
||||
source="background_task",
|
||||
message=f"Starting URL crawling process for: {url}",
|
||||
metadata={"url": url, "user_id": str(user_id)},
|
||||
)
|
||||
|
||||
try:
|
||||
# URL validation step
|
||||
await task_logger.log_task_progress(
|
||||
log_entry, f"Validating URL: {url}", {"stage": "validation"}
|
||||
)
|
||||
|
||||
if not validators.url(url):
|
||||
raise ValueError(f"Url {url} is not a valid URL address")
|
||||
|
||||
# Set up crawler
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Setting up crawler for URL: {url}",
|
||||
{
|
||||
"stage": "crawler_setup",
|
||||
"firecrawl_available": bool(config.FIRECRAWL_API_KEY),
|
||||
},
|
||||
)
|
||||
|
||||
if config.FIRECRAWL_API_KEY:
|
||||
crawl_loader = FireCrawlLoader(
|
||||
url=url,
|
||||
api_key=config.FIRECRAWL_API_KEY,
|
||||
mode="scrape",
|
||||
params={
|
||||
"formats": ["markdown"],
|
||||
"excludeTags": ["a"],
|
||||
},
|
||||
)
|
||||
else:
|
||||
crawl_loader = AsyncChromiumLoader(urls=[url], headless=True)
|
||||
|
||||
# Perform crawling
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Crawling URL content: {url}",
|
||||
{"stage": "crawling", "crawler_type": type(crawl_loader).__name__},
|
||||
)
|
||||
|
||||
url_crawled = await crawl_loader.aload()
|
||||
|
||||
if isinstance(crawl_loader, FireCrawlLoader):
|
||||
content_in_markdown = url_crawled[0].page_content
|
||||
elif isinstance(crawl_loader, AsyncChromiumLoader):
|
||||
content_in_markdown = md.transform_documents(url_crawled)[0].page_content
|
||||
|
||||
# Format document
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Processing crawled content from: {url}",
|
||||
{"stage": "content_processing", "content_length": len(content_in_markdown)},
|
||||
)
|
||||
|
||||
# Format document metadata in a more maintainable way
|
||||
metadata_sections = [
|
||||
(
|
||||
"METADATA",
|
||||
[
|
||||
f"{key.upper()}: {value}"
|
||||
for key, value in url_crawled[0].metadata.items()
|
||||
],
|
||||
),
|
||||
(
|
||||
"CONTENT",
|
||||
["FORMAT: markdown", "TEXT_START", content_in_markdown, "TEXT_END"],
|
||||
),
|
||||
]
|
||||
|
||||
# Build the document string more efficiently
|
||||
document_parts = []
|
||||
document_parts.append("<DOCUMENT>")
|
||||
|
||||
for section_title, section_content in metadata_sections:
|
||||
document_parts.append(f"<{section_title}>")
|
||||
document_parts.extend(section_content)
|
||||
document_parts.append(f"</{section_title}>")
|
||||
|
||||
document_parts.append("</DOCUMENT>")
|
||||
combined_document_string = "\n".join(document_parts)
|
||||
content_hash = generate_content_hash(combined_document_string, search_space_id)
|
||||
|
||||
# Check for duplicates
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Checking for duplicate content: {url}",
|
||||
{"stage": "duplicate_check", "content_hash": content_hash},
|
||||
)
|
||||
|
||||
existing_document = await check_duplicate_document(session, content_hash)
|
||||
if existing_document:
|
||||
await task_logger.log_task_success(
|
||||
log_entry,
|
||||
f"Document already exists for URL: {url}",
|
||||
{
|
||||
"duplicate_detected": True,
|
||||
"existing_document_id": existing_document.id,
|
||||
},
|
||||
)
|
||||
logging.info(
|
||||
f"Document with content hash {content_hash} already exists. Skipping processing."
|
||||
)
|
||||
return existing_document
|
||||
|
||||
# Get LLM for summary generation
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Preparing for summary generation: {url}",
|
||||
{"stage": "llm_setup"},
|
||||
)
|
||||
|
||||
# Get user's long context LLM
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Generating summary for URL content: {url}",
|
||||
{"stage": "summary_generation"},
|
||||
)
|
||||
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
combined_document_string, user_llm
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Processing content chunks for URL: {url}",
|
||||
{"stage": "chunk_processing"},
|
||||
)
|
||||
|
||||
chunks = await create_document_chunks(content_in_markdown)
|
||||
|
||||
# Create and store document
|
||||
await task_logger.log_task_progress(
|
||||
log_entry,
|
||||
f"Creating document in database for URL: {url}",
|
||||
{"stage": "document_creation", "chunks_count": len(chunks)},
|
||||
)
|
||||
|
||||
document = Document(
|
||||
search_space_id=search_space_id,
|
||||
title=url_crawled[0].metadata["title"]
|
||||
if isinstance(crawl_loader, FireCrawlLoader)
|
||||
else url_crawled[0].metadata["source"],
|
||||
document_type=DocumentType.CRAWLED_URL,
|
||||
document_metadata=url_crawled[0].metadata,
|
||||
content=summary_content,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
content_hash=content_hash,
|
||||
)
|
||||
|
||||
session.add(document)
|
||||
await session.commit()
|
||||
await session.refresh(document)
|
||||
|
||||
# Log success
|
||||
await task_logger.log_task_success(
|
||||
log_entry,
|
||||
f"Successfully crawled and processed URL: {url}",
|
||||
{
|
||||
"document_id": document.id,
|
||||
"title": document.title,
|
||||
"content_hash": content_hash,
|
||||
"chunks_count": len(chunks),
|
||||
"summary_length": len(summary_content),
|
||||
},
|
||||
)
|
||||
|
||||
return document
|
||||
|
||||
except SQLAlchemyError as db_error:
|
||||
await session.rollback()
|
||||
await task_logger.log_task_failure(
|
||||
log_entry,
|
||||
f"Database error while processing URL: {url}",
|
||||
str(db_error),
|
||||
{"error_type": "SQLAlchemyError"},
|
||||
)
|
||||
raise db_error
|
||||
except Exception as e:
|
||||
await session.rollback()
|
||||
await task_logger.log_task_failure(
|
||||
log_entry,
|
||||
f"Failed to crawl URL: {url}",
|
||||
str(e),
|
||||
{"error_type": type(e).__name__},
|
||||
)
|
||||
raise RuntimeError(f"Failed to crawl URL: {e!s}") from e
|
Loading…
Add table
Add a link
Reference in a new issue