mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-02 02:29:08 +00:00
feat: Integrate query reformulation in stream_connector_search_results
This commit is contained in:
parent
613b13b33b
commit
2e702902e4
2 changed files with 94 additions and 13 deletions
|
@ -8,6 +8,7 @@ from app.utils.connector_service import ConnectorService
|
|||
from app.utils.research_service import ResearchService
|
||||
from app.utils.streaming_service import StreamingService
|
||||
from app.utils.reranker_service import RerankerService
|
||||
from app.utils.query_service import QueryService
|
||||
from app.config import config
|
||||
from app.utils.document_converters import convert_chunks_to_langchain_documents
|
||||
|
||||
|
@ -37,6 +38,10 @@ async def stream_connector_search_results(
|
|||
connector_service = ConnectorService(session)
|
||||
streaming_service = StreamingService()
|
||||
|
||||
# Reformulate the user query using the strategic LLM
|
||||
yield streaming_service.add_terminal_message("Reformulating your query for better results...", "info")
|
||||
reformulated_query = await QueryService.reformulate_query(user_query)
|
||||
yield streaming_service.add_terminal_message(f"Searching for: {reformulated_query}", "success")
|
||||
|
||||
reranker_service = RerankerService.get_reranker_instance(config)
|
||||
|
||||
|
@ -59,9 +64,9 @@ async def stream_connector_search_results(
|
|||
# Send terminal message about starting search
|
||||
yield streaming_service.add_terminal_message("Starting to search for crawled URLs...")
|
||||
|
||||
# Search for crawled URLs
|
||||
# Search for crawled URLs using reformulated query
|
||||
result_object, crawled_urls_chunks = await connector_service.search_crawled_urls(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
user_id=user_id,
|
||||
search_space_id=search_space_id,
|
||||
top_k=TOP_K
|
||||
|
@ -86,9 +91,9 @@ async def stream_connector_search_results(
|
|||
# Send terminal message about starting search
|
||||
yield streaming_service.add_terminal_message("Starting to search for files...")
|
||||
|
||||
# Search for files
|
||||
# Search for files using reformulated query
|
||||
result_object, files_chunks = await connector_service.search_files(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
user_id=user_id,
|
||||
search_space_id=search_space_id,
|
||||
top_k=TOP_K
|
||||
|
@ -112,9 +117,9 @@ async def stream_connector_search_results(
|
|||
# Send terminal message about starting search
|
||||
yield streaming_service.add_terminal_message("Starting to search with Tavily API...")
|
||||
|
||||
# Search using Tavily API
|
||||
# Search using Tavily API with reformulated query
|
||||
result_object, tavily_chunks = await connector_service.search_tavily(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
user_id=user_id,
|
||||
top_k=TOP_K
|
||||
)
|
||||
|
@ -137,9 +142,9 @@ async def stream_connector_search_results(
|
|||
# Send terminal message about starting search
|
||||
yield streaming_service.add_terminal_message("Starting to search for slack connector...")
|
||||
|
||||
# Search using Slack API
|
||||
# Search using Slack API with reformulated query
|
||||
result_object, slack_chunks = await connector_service.search_slack(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
user_id=user_id,
|
||||
search_space_id=search_space_id,
|
||||
top_k=TOP_K
|
||||
|
@ -164,9 +169,9 @@ async def stream_connector_search_results(
|
|||
# Send terminal message about starting search
|
||||
yield streaming_service.add_terminal_message("Starting to search for notion connector...")
|
||||
|
||||
# Search using Notion API
|
||||
# Search using Notion API with reformulated query
|
||||
result_object, notion_chunks = await connector_service.search_notion(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
user_id=user_id,
|
||||
search_space_id=search_space_id,
|
||||
top_k=TOP_K
|
||||
|
@ -209,8 +214,8 @@ async def stream_connector_search_results(
|
|||
} for i, doc in enumerate(all_raw_documents)
|
||||
]
|
||||
|
||||
# Rerank documents
|
||||
reranked_docs = reranker_service.rerank_documents(user_query, reranker_input_docs)
|
||||
# Rerank documents using the reformulated query
|
||||
reranked_docs = reranker_service.rerank_documents(reformulated_query, reranker_input_docs)
|
||||
|
||||
# Sort by score in descending order
|
||||
reranked_docs.sort(key=lambda x: x.get("score", 0), reverse=True)
|
||||
|
@ -301,7 +306,7 @@ async def stream_connector_search_results(
|
|||
# Start the research process in a separate task
|
||||
research_task = asyncio.create_task(
|
||||
ResearchService.stream_research(
|
||||
user_query=user_query,
|
||||
user_query=reformulated_query,
|
||||
documents=all_langchain_documents_to_research,
|
||||
on_progress=stream_handler.handle_progress,
|
||||
research_mode=research_mode
|
||||
|
|
76
surfsense_backend/app/utils/query_service.py
Normal file
76
surfsense_backend/app/utils/query_service.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
from typing import Dict, Any
|
||||
from langchain.schema import LLMResult, HumanMessage, SystemMessage
|
||||
from app.config import config
|
||||
|
||||
class QueryService:
|
||||
"""
|
||||
Service for query-related operations, including reformulation and processing.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
async def reformulate_query(user_query: str) -> str:
|
||||
"""
|
||||
Reformulate the user query using the STRATEGIC_LLM to make it more
|
||||
effective for information retrieval and research purposes.
|
||||
|
||||
Args:
|
||||
user_query: The original user query
|
||||
|
||||
Returns:
|
||||
str: The reformulated query
|
||||
"""
|
||||
if not user_query or not user_query.strip():
|
||||
return user_query
|
||||
|
||||
try:
|
||||
# Get the strategic LLM instance from config
|
||||
llm = config.strategic_llm_instance
|
||||
|
||||
# Create system message with instructions
|
||||
system_message = SystemMessage(
|
||||
content="""
|
||||
You are an expert at reformulating user queries to optimize information retrieval.
|
||||
Your job is to take a user query and reformulate it to:
|
||||
|
||||
1. Make it more specific and detailed
|
||||
2. Expand ambiguous terms
|
||||
3. Include relevant synonyms and alternative phrasings
|
||||
4. Break down complex questions into their core components
|
||||
5. Ensure it's comprehensive for research purposes
|
||||
|
||||
The query will be used with the following data sources/connectors:
|
||||
- SERPER_API: Web search for retrieving current information from the internet
|
||||
- TAVILY_API: Research-focused search API for comprehensive information
|
||||
- SLACK_CONNECTOR: Retrieves information from indexed Slack workspace conversations
|
||||
- NOTION_CONNECTOR: Retrieves information from indexed Notion documents and databases
|
||||
- FILE: Searches through user's uploaded files
|
||||
- CRAWLED_URL: Searches through previously crawled web pages
|
||||
|
||||
Please optimize the query to work effectively across these different data sources.
|
||||
|
||||
Return ONLY the reformulated query without explanations, prefixes, or commentary.
|
||||
Do not include phrases like "Reformulated query:" or any other text except the query itself.
|
||||
"""
|
||||
)
|
||||
|
||||
# Create human message with the user query
|
||||
human_message = HumanMessage(
|
||||
content=f"Reformulate this query for better research results: {user_query}"
|
||||
)
|
||||
|
||||
# Get the response from the LLM
|
||||
response = await llm.agenerate(messages=[[system_message, human_message]])
|
||||
|
||||
# Extract the reformulated query from the response
|
||||
reformulated_query = response.generations[0][0].text.strip()
|
||||
|
||||
# Return the original query if the reformulation is empty
|
||||
if not reformulated_query:
|
||||
return user_query
|
||||
|
||||
return reformulated_query
|
||||
|
||||
except Exception as e:
|
||||
# Log the error and return the original query
|
||||
print(f"Error reformulating query: {e}")
|
||||
return user_query
|
Loading…
Add table
Reference in a new issue