Fixed formatting and linting post Jira connector PR

This commit is contained in:
Utkarsh-Patel-13 2025-07-25 10:52:34 -07:00
commit 2827522ebc
30 changed files with 5428 additions and 3279 deletions

View file

@ -10,6 +10,7 @@ from sqlalchemy.future import select
from app.config import config
from app.connectors.discord_connector import DiscordConnector
from app.connectors.github_connector import GitHubConnector
from app.connectors.jira_connector import JiraConnector
from app.connectors.linear_connector import LinearConnector
from app.connectors.notion_history import NotionHistoryConnector
from app.connectors.slack_history import SlackHistory
@ -1374,9 +1375,9 @@ async def index_linear_issues(
# Process each issue
for issue in issues:
try:
issue_id = issue.get("id")
issue_identifier = issue.get("identifier", "")
issue_title = issue.get("title", "")
issue_id = issue.get("key")
issue_identifier = issue.get("id", "")
issue_title = issue.get("key", "")
if not issue_id or not issue_title:
logger.warning(
@ -1978,3 +1979,353 @@ async def index_discord_messages(
)
logger.error(f"Failed to index Discord messages: {e!s}", exc_info=True)
return 0, f"Failed to index Discord messages: {e!s}"
async def index_jira_issues(
session: AsyncSession,
connector_id: int,
search_space_id: int,
user_id: str,
start_date: str | None = None,
end_date: str | None = None,
update_last_indexed: bool = True,
) -> tuple[int, str | None]:
"""
Index Jira issues and comments.
Args:
session: Database session
connector_id: ID of the Jira connector
search_space_id: ID of the search space to store documents in
user_id: User ID
start_date: Start date for indexing (YYYY-MM-DD format)
end_date: End date for indexing (YYYY-MM-DD format)
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
task_logger = TaskLoggingService(session, search_space_id)
# Log task start
log_entry = await task_logger.log_task_start(
task_name="jira_issues_indexing",
source="connector_indexing_task",
message=f"Starting Jira issues indexing for connector {connector_id}",
metadata={
"connector_id": connector_id,
"user_id": str(user_id),
"start_date": start_date,
"end_date": end_date,
},
)
try:
# Get the connector from the database
result = await session.execute(
select(SearchSourceConnector).filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type
== SearchSourceConnectorType.JIRA_CONNECTOR,
)
)
connector = result.scalars().first()
if not connector:
await task_logger.log_task_failure(
log_entry,
f"Connector with ID {connector_id} not found",
"Connector not found",
{"error_type": "ConnectorNotFound"},
)
return 0, f"Connector with ID {connector_id} not found"
# Get the Jira credentials from the connector config
jira_email = connector.config.get("JIRA_EMAIL")
jira_api_token = connector.config.get("JIRA_API_TOKEN")
jira_base_url = connector.config.get("JIRA_BASE_URL")
if not jira_email or not jira_api_token or not jira_base_url:
await task_logger.log_task_failure(
log_entry,
f"Jira credentials not found in connector config for connector {connector_id}",
"Missing Jira credentials",
{"error_type": "MissingCredentials"},
)
return 0, "Jira credentials not found in connector config"
# Initialize Jira client
await task_logger.log_task_progress(
log_entry,
f"Initializing Jira client for connector {connector_id}",
{"stage": "client_initialization"},
)
jira_client = JiraConnector(
base_url=jira_base_url, email=jira_email, api_token=jira_api_token
)
# Calculate date range
if start_date is None or end_date is None:
# Fall back to calculating dates based on last_indexed_at
calculated_end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = (
connector.last_indexed_at.replace(tzinfo=None)
if connector.last_indexed_at.tzinfo
else connector.last_indexed_at
)
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > calculated_end_date:
logger.warning(
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
)
calculated_start_date = calculated_end_date - timedelta(days=365)
else:
calculated_start_date = last_indexed_naive
logger.info(
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
)
else:
calculated_start_date = calculated_end_date - timedelta(
days=365
) # Use 365 days as default
logger.info(
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
)
# Use calculated dates if not provided
start_date_str = (
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
)
end_date_str = (
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
)
else:
# Use provided dates
start_date_str = start_date
end_date_str = end_date
await task_logger.log_task_progress(
log_entry,
f"Fetching Jira issues from {start_date_str} to {end_date_str}",
{
"stage": "fetching_issues",
"start_date": start_date_str,
"end_date": end_date_str,
},
)
# Get issues within date range
try:
issues, error = jira_client.get_issues_by_date_range(
start_date=start_date_str, end_date=end_date_str, include_comments=True
)
if error:
logger.error(f"Failed to get Jira issues: {error}")
# Don't treat "No issues found" as an error that should stop indexing
if "No issues found" in error:
logger.info(
"No issues found is not a critical error, continuing with update"
)
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(
f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
)
await task_logger.log_task_success(
log_entry,
f"No Jira issues found in date range {start_date_str} to {end_date_str}",
{"issues_found": 0},
)
return 0, None
else:
await task_logger.log_task_failure(
log_entry,
f"Failed to get Jira issues: {error}",
"API Error",
{"error_type": "APIError"},
)
return 0, f"Failed to get Jira issues: {error}"
logger.info(f"Retrieved {len(issues)} issues from Jira API")
except Exception as e:
logger.error(f"Error fetching Jira issues: {e!s}", exc_info=True)
return 0, f"Error fetching Jira issues: {e!s}"
# Process and index each issue
documents_indexed = 0
skipped_issues = []
documents_skipped = 0
for issue in issues:
try:
issue_id = issue.get("key")
issue_identifier = issue.get("key", "")
issue_title = issue.get("id", "")
if not issue_id or not issue_title:
logger.warning(
f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
)
skipped_issues.append(
f"{issue_identifier or 'Unknown'} (missing data)"
)
documents_skipped += 1
continue
# Format the issue for better readability
formatted_issue = jira_client.format_issue(issue)
# Convert to markdown
issue_content = jira_client.format_issue_to_markdown(formatted_issue)
if not issue_content:
logger.warning(
f"Skipping issue with no content: {issue_identifier} - {issue_title}"
)
skipped_issues.append(f"{issue_identifier} (no content)")
documents_skipped += 1
continue
# Create a simple summary
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
if formatted_issue.get("description"):
summary_content += (
f"Description: {formatted_issue.get('description')}\n\n"
)
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
# Generate content hash
content_hash = generate_content_hash(issue_content, search_space_id)
# Check if document already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = (
existing_doc_by_hash_result.scalars().first()
)
if existing_document_by_hash:
logger.info(
f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
)
documents_skipped += 1
continue
# Generate embedding for the summary
summary_embedding = config.embedding_model_instance.embed(
summary_content
)
# Process chunks - using the full issue content with comments
chunks = [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(issue_content)
]
# Create and store new document
logger.info(
f"Creating new document for issue {issue_identifier} - {issue_title}"
)
document = Document(
search_space_id=search_space_id,
title=f"Jira - {issue_identifier}: {issue_title}",
document_type=DocumentType.JIRA_CONNECTOR,
document_metadata={
"issue_id": issue_id,
"issue_identifier": issue_identifier,
"issue_title": issue_title,
"state": formatted_issue.get("status", "Unknown"),
"comment_count": comment_count,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
},
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks,
)
session.add(document)
documents_indexed += 1
logger.info(
f"Successfully indexed new issue {issue_identifier} - {issue_title}"
)
except Exception as e:
logger.error(
f"Error processing issue {issue.get('identifier', 'Unknown')}: {e!s}",
exc_info=True,
)
skipped_issues.append(
f"{issue.get('identifier', 'Unknown')} (processing error)"
)
documents_skipped += 1
continue # Skip this issue and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
total_processed = documents_indexed
if update_last_indexed:
connector.last_indexed_at = datetime.now()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
# Commit all changes
await session.commit()
logger.info("Successfully committed all JIRA document changes to database")
# Log success
await task_logger.log_task_success(
log_entry,
f"Successfully completed JIRA indexing for connector {connector_id}",
{
"issues_processed": total_processed,
"documents_indexed": documents_indexed,
"documents_skipped": documents_skipped,
"skipped_issues_count": len(skipped_issues),
},
)
logger.info(
f"JIRA indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
)
return (
total_processed,
None,
) # Return None as the error message to indicate success
except SQLAlchemyError as db_error:
await session.rollback()
await task_logger.log_task_failure(
log_entry,
f"Database error during JIRA indexing for connector {connector_id}",
str(db_error),
{"error_type": "SQLAlchemyError"},
)
logger.error(f"Database error: {db_error!s}", exc_info=True)
return 0, f"Database error: {db_error!s}"
except Exception as e:
await session.rollback()
await task_logger.log_task_failure(
log_entry,
f"Failed to index JIRA issues for connector {connector_id}",
str(e),
{"error_type": type(e).__name__},
)
logger.error(f"Failed to index JIRA issues: {e!s}", exc_info=True)
return 0, f"Failed to index JIRA issues: {e!s}"