diff --git a/surfsense_backend/app/tasks/connectors_indexing_tasks.py b/surfsense_backend/app/tasks/connectors_indexing_tasks.py
new file mode 100644
index 0000000..0c678b3
--- /dev/null
+++ b/surfsense_backend/app/tasks/connectors_indexing_tasks.py
@@ -0,0 +1,3578 @@
+import asyncio
+import logging
+from datetime import UTC, datetime, timedelta
+
+from google.oauth2.credentials import Credentials
+from slack_sdk.errors import SlackApiError
+from sqlalchemy.exc import SQLAlchemyError
+from sqlalchemy.ext.asyncio import AsyncSession
+from sqlalchemy.future import select
+
+from app.config import config
+from app.connectors.clickup_connector import ClickUpConnector
+from app.connectors.confluence_connector import ConfluenceConnector
+from app.connectors.discord_connector import DiscordConnector
+from app.connectors.github_connector import GitHubConnector
+from app.connectors.google_calendar_connector import GoogleCalendarConnector
+from app.connectors.google_gmail_connector import GoogleGmailConnector
+from app.connectors.jira_connector import JiraConnector
+from app.connectors.linear_connector import LinearConnector
+from app.connectors.notion_history import NotionHistoryConnector
+from app.connectors.slack_history import SlackHistory
+from app.db import (
+ Chunk,
+ Document,
+ DocumentType,
+ SearchSourceConnector,
+ SearchSourceConnectorType,
+)
+from app.prompts import SUMMARY_PROMPT_TEMPLATE
+from app.services.llm_service import get_user_long_context_llm
+from app.services.task_logging_service import TaskLoggingService
+from app.utils.document_converters import generate_content_hash
+
+# Set up logging
+logger = logging.getLogger(__name__)
+
+
+async def index_slack_messages(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Slack messages from all accessible channels.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Slack connector
+ search_space_id: ID of the search space to store documents in
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="slack_messages_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Slack messages indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Retrieving Slack connector {connector_id} from database",
+ {"stage": "connector_retrieval"},
+ )
+
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.SLACK_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a Slack connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return (
+ 0,
+ f"Connector with ID {connector_id} not found or is not a Slack connector",
+ )
+
+ # Get the Slack token from the connector config
+ slack_token = connector.config.get("SLACK_BOT_TOKEN")
+ if not slack_token:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Slack token not found in connector config for connector {connector_id}",
+ "Missing Slack token",
+ {"error_type": "MissingToken"},
+ )
+ return 0, "Slack token not found in connector config"
+
+ # Initialize Slack client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Slack client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ slack_client = SlackHistory(token=slack_token)
+
+ # Calculate date range
+ await task_logger.log_task_progress(
+ log_entry,
+ "Calculating date range for Slack indexing",
+ {
+ "stage": "date_calculation",
+ "provided_start_date": start_date,
+ "provided_end_date": end_date,
+ },
+ )
+
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now()
+
+ # Use last_indexed_at as start date if available, otherwise use 365 days ago
+ if connector.last_indexed_at:
+ # Convert dates to be comparable (both timezone-naive)
+ last_indexed_naive = (
+ connector.last_indexed_at.replace(tzinfo=None)
+ if connector.last_indexed_at.tzinfo
+ else connector.last_indexed_at
+ )
+
+ # Check if last_indexed_at is in the future or after end_date
+ if last_indexed_naive > calculated_end_date:
+ logger.warning(
+ f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
+ )
+ calculated_start_date = calculated_end_date - timedelta(days=365)
+ else:
+ calculated_start_date = last_indexed_naive
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(
+ days=365
+ ) # Use 365 days as default
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided
+ start_date_str = (
+ start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
+ )
+ end_date_str = (
+ end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
+ )
+ else:
+ # Use provided dates
+ start_date_str = start_date
+ end_date_str = end_date
+
+ logger.info(f"Indexing Slack messages from {start_date_str} to {end_date_str}")
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Slack channels from {start_date_str} to {end_date_str}",
+ {
+ "stage": "fetch_channels",
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ },
+ )
+
+ # Get all channels
+ try:
+ channels = slack_client.get_all_channels()
+ except Exception as e:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Slack channels for connector {connector_id}",
+ str(e),
+ {"error_type": "ChannelFetchError"},
+ )
+ return 0, f"Failed to get Slack channels: {e!s}"
+
+ if not channels:
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Slack channels found for connector {connector_id}",
+ {"channels_found": 0},
+ )
+ return 0, "No Slack channels found"
+
+ # Track the number of documents indexed
+ documents_indexed = 0
+ documents_skipped = 0
+ skipped_channels = []
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting to process {len(channels)} Slack channels",
+ {"stage": "process_channels", "total_channels": len(channels)},
+ )
+
+ # Process each channel
+ for (
+ channel_obj
+ ) in channels: # Modified loop to iterate over list of channel objects
+ channel_id = channel_obj["id"]
+ channel_name = channel_obj["name"]
+ is_private = channel_obj["is_private"]
+ is_member = channel_obj[
+ "is_member"
+ ] # This might be False for public channels too
+
+ try:
+ # If it's a private channel and the bot is not a member, skip.
+ # For public channels, if they are listed by conversations.list, the bot can typically read history.
+ # The `not_in_channel` error in get_conversation_history will be the ultimate gatekeeper if history is inaccessible.
+ if is_private and not is_member:
+ logger.warning(
+ f"Bot is not a member of private channel {channel_name} ({channel_id}). Skipping."
+ )
+ skipped_channels.append(
+ f"{channel_name} (private, bot not a member)"
+ )
+ documents_skipped += 1
+ continue
+
+ # Get messages for this channel
+ # The get_history_by_date_range now uses get_conversation_history,
+ # which handles 'not_in_channel' by returning [] and logging.
+ messages, error = slack_client.get_history_by_date_range(
+ channel_id=channel_id,
+ start_date=start_date_str,
+ end_date=end_date_str,
+ limit=1000, # Limit to 1000 messages per channel
+ )
+
+ if error:
+ logger.warning(
+ f"Error getting messages from channel {channel_name}: {error}"
+ )
+ skipped_channels.append(f"{channel_name} (error: {error})")
+ documents_skipped += 1
+ continue # Skip this channel if there's an error
+
+ if not messages:
+ logger.info(
+ f"No messages found in channel {channel_name} for the specified date range."
+ )
+ documents_skipped += 1
+ continue # Skip if no messages
+
+ # Format messages with user info
+ formatted_messages = []
+ for msg in messages:
+ # Skip bot messages and system messages
+ if msg.get("subtype") in [
+ "bot_message",
+ "channel_join",
+ "channel_leave",
+ ]:
+ continue
+
+ formatted_msg = slack_client.format_message(
+ msg, include_user_info=True
+ )
+ formatted_messages.append(formatted_msg)
+
+ if not formatted_messages:
+ logger.info(
+ f"No valid messages found in channel {channel_name} after filtering."
+ )
+ documents_skipped += 1
+ continue # Skip if no valid messages after filtering
+
+ # Convert messages to markdown format
+ channel_content = f"# Slack Channel: {channel_name}\n\n"
+
+ for msg in formatted_messages:
+ user_name = msg.get("user_name", "Unknown User")
+ timestamp = msg.get("datetime", "Unknown Time")
+ text = msg.get("text", "")
+
+ channel_content += (
+ f"## {user_name} ({timestamp})\n\n{text}\n\n---\n\n"
+ )
+
+ # Format document metadata
+ metadata_sections = [
+ (
+ "METADATA",
+ [
+ f"CHANNEL_NAME: {channel_name}",
+ f"CHANNEL_ID: {channel_id}",
+ # f"START_DATE: {start_date_str}",
+ # f"END_DATE: {end_date_str}",
+ f"MESSAGE_COUNT: {len(formatted_messages)}",
+ ],
+ ),
+ (
+ "CONTENT",
+ ["FORMAT: markdown", "TEXT_START", channel_content, "TEXT_END"],
+ ),
+ ]
+
+ # Build the document string
+ document_parts = []
+ document_parts.append("")
+
+ for section_title, section_content in metadata_sections:
+ document_parts.append(f"<{section_title}>")
+ document_parts.extend(section_content)
+ document_parts.append(f"{section_title}>")
+
+ document_parts.append("")
+ combined_document_string = "\n".join(document_parts)
+ content_hash = generate_content_hash(
+ combined_document_string, search_space_id
+ )
+
+ # Check if document with this content hash already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for channel {channel_name}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Get user's long context LLM
+ user_llm = await get_user_long_context_llm(session, user_id)
+ if not user_llm:
+ logger.error(f"No long context LLM configured for user {user_id}")
+ skipped_channels.append(f"{channel_name} (no LLM configured)")
+ documents_skipped += 1
+ continue
+
+ # Generate summary
+ summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
+ summary_result = await summary_chain.ainvoke(
+ {"document": combined_document_string}
+ )
+ summary_content = summary_result.content
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(channel_content)
+ ]
+
+ # Create and store new document
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Slack - {channel_name}",
+ document_type=DocumentType.SLACK_CONNECTOR,
+ document_metadata={
+ "channel_name": channel_name,
+ "channel_id": channel_id,
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ "message_count": len(formatted_messages),
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ embedding=summary_embedding,
+ chunks=chunks,
+ content_hash=content_hash,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(
+ f"Successfully indexed new channel {channel_name} with {len(formatted_messages)} messages"
+ )
+
+ except SlackApiError as slack_error:
+ logger.error(
+ f"Slack API error for channel {channel_name}: {slack_error!s}"
+ )
+ skipped_channels.append(f"{channel_name} (Slack API error)")
+ documents_skipped += 1
+ continue # Skip this channel and continue with others
+ except Exception as e:
+ logger.error(f"Error processing channel {channel_name}: {e!s}")
+ skipped_channels.append(f"{channel_name} (processing error)")
+ documents_skipped += 1
+ continue # Skip this channel and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ # and if we successfully indexed at least one channel
+ total_processed = documents_indexed
+ if update_last_indexed and total_processed > 0:
+ connector.last_indexed_at = datetime.now()
+
+ # Commit all changes
+ await session.commit()
+
+ # Prepare result message
+ result_message = None
+ if skipped_channels:
+ result_message = f"Processed {total_processed} channels. Skipped {len(skipped_channels)} channels: {', '.join(skipped_channels)}"
+ else:
+ result_message = f"Processed {total_processed} channels."
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Slack indexing for connector {connector_id}",
+ {
+ "channels_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_channels_count": len(skipped_channels),
+ "result_message": result_message,
+ },
+ )
+
+ logger.info(
+ f"Slack indexing completed: {documents_indexed} new channels, {documents_skipped} skipped"
+ )
+ return total_processed, result_message
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Slack indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}")
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Slack messages for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Slack messages: {e!s}")
+ return 0, f"Failed to index Slack messages: {e!s}"
+
+
+async def index_notion_pages(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Notion pages from all accessible pages.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Notion connector
+ search_space_id: ID of the search space to store documents in
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="notion_pages_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Notion pages indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Retrieving Notion connector {connector_id} from database",
+ {"stage": "connector_retrieval"},
+ )
+
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.NOTION_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a Notion connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return (
+ 0,
+ f"Connector with ID {connector_id} not found or is not a Notion connector",
+ )
+
+ # Get the Notion token from the connector config
+ notion_token = connector.config.get("NOTION_INTEGRATION_TOKEN")
+ if not notion_token:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Notion integration token not found in connector config for connector {connector_id}",
+ "Missing Notion token",
+ {"error_type": "MissingToken"},
+ )
+ return 0, "Notion integration token not found in connector config"
+
+ # Initialize Notion client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Notion client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ logger.info(f"Initializing Notion client for connector {connector_id}")
+ notion_client = NotionHistoryConnector(token=notion_token)
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates
+ calculated_end_date = datetime.now()
+ calculated_start_date = calculated_end_date - timedelta(
+ days=365
+ ) # Check for last 1 year of pages
+
+ # Use calculated dates if not provided
+ if start_date is None:
+ start_date_iso = calculated_start_date.strftime("%Y-%m-%dT%H:%M:%SZ")
+ else:
+ # Convert YYYY-MM-DD to ISO format
+ start_date_iso = datetime.strptime(start_date, "%Y-%m-%d").strftime(
+ "%Y-%m-%dT%H:%M:%SZ"
+ )
+
+ if end_date is None:
+ end_date_iso = calculated_end_date.strftime("%Y-%m-%dT%H:%M:%SZ")
+ else:
+ # Convert YYYY-MM-DD to ISO format
+ end_date_iso = datetime.strptime(end_date, "%Y-%m-%d").strftime(
+ "%Y-%m-%dT%H:%M:%SZ"
+ )
+ else:
+ # Convert provided dates to ISO format for Notion API
+ start_date_iso = datetime.strptime(start_date, "%Y-%m-%d").strftime(
+ "%Y-%m-%dT%H:%M:%SZ"
+ )
+ end_date_iso = datetime.strptime(end_date, "%Y-%m-%d").strftime(
+ "%Y-%m-%dT%H:%M:%SZ"
+ )
+
+ logger.info(f"Fetching Notion pages from {start_date_iso} to {end_date_iso}")
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Notion pages from {start_date_iso} to {end_date_iso}",
+ {
+ "stage": "fetch_pages",
+ "start_date": start_date_iso,
+ "end_date": end_date_iso,
+ },
+ )
+
+ # Get all pages
+ try:
+ pages = notion_client.get_all_pages(
+ start_date=start_date_iso, end_date=end_date_iso
+ )
+ logger.info(f"Found {len(pages)} Notion pages")
+ except Exception as e:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Notion pages for connector {connector_id}",
+ str(e),
+ {"error_type": "PageFetchError"},
+ )
+ logger.error(f"Error fetching Notion pages: {e!s}", exc_info=True)
+ return 0, f"Failed to get Notion pages: {e!s}"
+
+ if not pages:
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Notion pages found for connector {connector_id}",
+ {"pages_found": 0},
+ )
+ logger.info("No Notion pages found to index")
+ return 0, "No Notion pages found"
+
+ # Track the number of documents indexed
+ documents_indexed = 0
+ documents_skipped = 0
+ skipped_pages = []
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting to process {len(pages)} Notion pages",
+ {"stage": "process_pages", "total_pages": len(pages)},
+ )
+
+ # Process each page
+ for page in pages:
+ try:
+ page_id = page.get("page_id")
+ page_title = page.get("title", f"Untitled page ({page_id})")
+ page_content = page.get("content", [])
+
+ logger.info(f"Processing Notion page: {page_title} ({page_id})")
+
+ if not page_content:
+ logger.info(f"No content found in page {page_title}. Skipping.")
+ skipped_pages.append(f"{page_title} (no content)")
+ documents_skipped += 1
+ continue
+
+ # Convert page content to markdown format
+ markdown_content = f"# Notion Page: {page_title}\n\n"
+
+ # Process blocks recursively
+ def process_blocks(blocks, level=0):
+ result = ""
+ for block in blocks:
+ block_type = block.get("type")
+ block_content = block.get("content", "")
+ children = block.get("children", [])
+
+ # Add indentation based on level
+ indent = " " * level
+
+ # Format based on block type
+ if block_type in ["paragraph", "text"]:
+ result += f"{indent}{block_content}\n\n"
+ elif block_type in ["heading_1", "header"]:
+ result += f"{indent}# {block_content}\n\n"
+ elif block_type == "heading_2":
+ result += f"{indent}## {block_content}\n\n"
+ elif block_type == "heading_3":
+ result += f"{indent}### {block_content}\n\n"
+ elif block_type == "bulleted_list_item":
+ result += f"{indent}* {block_content}\n"
+ elif block_type == "numbered_list_item":
+ result += f"{indent}1. {block_content}\n"
+ elif block_type == "to_do":
+ result += f"{indent}- [ ] {block_content}\n"
+ elif block_type == "toggle":
+ result += f"{indent}> {block_content}\n"
+ elif block_type == "code":
+ result += f"{indent}```\n{block_content}\n```\n\n"
+ elif block_type == "quote":
+ result += f"{indent}> {block_content}\n\n"
+ elif block_type == "callout":
+ result += f"{indent}> **Note:** {block_content}\n\n"
+ elif block_type == "image":
+ result += f"{indent}\n\n"
+ else:
+ # Default for other block types
+ if block_content:
+ result += f"{indent}{block_content}\n\n"
+
+ # Process children recursively
+ if children:
+ result += process_blocks(children, level + 1)
+
+ return result
+
+ logger.debug(
+ f"Converting {len(page_content)} blocks to markdown for page {page_title}"
+ )
+ markdown_content += process_blocks(page_content)
+
+ # Format document metadata
+ metadata_sections = [
+ ("METADATA", [f"PAGE_TITLE: {page_title}", f"PAGE_ID: {page_id}"]),
+ (
+ "CONTENT",
+ [
+ "FORMAT: markdown",
+ "TEXT_START",
+ markdown_content,
+ "TEXT_END",
+ ],
+ ),
+ ]
+
+ # Build the document string
+ document_parts = []
+ document_parts.append("")
+
+ for section_title, section_content in metadata_sections:
+ document_parts.append(f"<{section_title}>")
+ document_parts.extend(section_content)
+ document_parts.append(f"{section_title}>")
+
+ document_parts.append("")
+ combined_document_string = "\n".join(document_parts)
+ content_hash = generate_content_hash(
+ combined_document_string, search_space_id
+ )
+
+ # Check if document with this content hash already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for page {page_title}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Get user's long context LLM
+ user_llm = await get_user_long_context_llm(session, user_id)
+ if not user_llm:
+ logger.error(f"No long context LLM configured for user {user_id}")
+ skipped_pages.append(f"{page_title} (no LLM configured)")
+ documents_skipped += 1
+ continue
+
+ # Generate summary
+ logger.debug(f"Generating summary for page {page_title}")
+ summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
+ summary_result = await summary_chain.ainvoke(
+ {"document": combined_document_string}
+ )
+ summary_content = summary_result.content
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks
+ logger.debug(f"Chunking content for page {page_title}")
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(markdown_content)
+ ]
+
+ # Create and store new document
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Notion - {page_title}",
+ document_type=DocumentType.NOTION_CONNECTOR,
+ document_metadata={
+ "page_title": page_title,
+ "page_id": page_id,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(f"Successfully indexed new Notion page: {page_title}")
+
+ except Exception as e:
+ logger.error(
+ f"Error processing Notion page {page.get('title', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ skipped_pages.append(
+ f"{page.get('title', 'Unknown')} (processing error)"
+ )
+ documents_skipped += 1
+ continue # Skip this page and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ # and if we successfully indexed at least one page
+ total_processed = documents_indexed
+ if update_last_indexed and total_processed > 0:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at for connector {connector_id}")
+
+ # Commit all changes
+ await session.commit()
+
+ # Prepare result message
+ result_message = None
+ if skipped_pages:
+ result_message = f"Processed {total_processed} pages. Skipped {len(skipped_pages)} pages: {', '.join(skipped_pages)}"
+ else:
+ result_message = f"Processed {total_processed} pages."
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Notion indexing for connector {connector_id}",
+ {
+ "pages_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_pages_count": len(skipped_pages),
+ "result_message": result_message,
+ },
+ )
+
+ logger.info(
+ f"Notion indexing completed: {documents_indexed} new pages, {documents_skipped} skipped"
+ )
+ return total_processed, result_message
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Notion indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(
+ f"Database error during Notion indexing: {db_error!s}", exc_info=True
+ )
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Notion pages for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Notion pages: {e!s}", exc_info=True)
+ return 0, f"Failed to index Notion pages: {e!s}"
+
+
+async def index_github_repos(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index code and documentation files from accessible GitHub repositories.
+
+ Args:
+ session: Database session
+ connector_id: ID of the GitHub connector
+ search_space_id: ID of the search space to store documents in
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="github_repos_indexing",
+ source="connector_indexing_task",
+ message=f"Starting GitHub repositories indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ documents_processed = 0
+ errors = []
+
+ try:
+ # 1. Get the GitHub connector from the database
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Retrieving GitHub connector {connector_id} from database",
+ {"stage": "connector_retrieval"},
+ )
+
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.GITHUB_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a GitHub connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return (
+ 0,
+ f"Connector with ID {connector_id} not found or is not a GitHub connector",
+ )
+
+ # 2. Get the GitHub PAT and selected repositories from the connector config
+ github_pat = connector.config.get("GITHUB_PAT")
+ repo_full_names_to_index = connector.config.get("repo_full_names")
+
+ if not github_pat:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"GitHub Personal Access Token (PAT) not found in connector config for connector {connector_id}",
+ "Missing GitHub PAT",
+ {"error_type": "MissingToken"},
+ )
+ return 0, "GitHub Personal Access Token (PAT) not found in connector config"
+
+ if not repo_full_names_to_index or not isinstance(
+ repo_full_names_to_index, list
+ ):
+ await task_logger.log_task_failure(
+ log_entry,
+ f"'repo_full_names' not found or is not a list in connector config for connector {connector_id}",
+ "Invalid repo configuration",
+ {"error_type": "InvalidConfiguration"},
+ )
+ return 0, "'repo_full_names' not found or is not a list in connector config"
+
+ # 3. Initialize GitHub connector client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing GitHub client for connector {connector_id}",
+ {
+ "stage": "client_initialization",
+ "repo_count": len(repo_full_names_to_index),
+ },
+ )
+
+ try:
+ github_client = GitHubConnector(token=github_pat)
+ except ValueError as e:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to initialize GitHub client for connector {connector_id}",
+ str(e),
+ {"error_type": "ClientInitializationError"},
+ )
+ return 0, f"Failed to initialize GitHub client: {e!s}"
+
+ # 4. Validate selected repositories
+ # For simplicity, we'll proceed with the list provided.
+ # If a repo is inaccessible, get_repository_files will likely fail gracefully later.
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting indexing for {len(repo_full_names_to_index)} selected repositories",
+ {
+ "stage": "repo_processing",
+ "repo_count": len(repo_full_names_to_index),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ logger.info(
+ f"Starting indexing for {len(repo_full_names_to_index)} selected repositories."
+ )
+ if start_date and end_date:
+ logger.info(
+ f"Date range requested: {start_date} to {end_date} (Note: GitHub indexing processes all files regardless of dates)"
+ )
+
+ # 6. Iterate through selected repositories and index files
+ for repo_full_name in repo_full_names_to_index:
+ if not repo_full_name or not isinstance(repo_full_name, str):
+ logger.warning(f"Skipping invalid repository entry: {repo_full_name}")
+ continue
+
+ logger.info(f"Processing repository: {repo_full_name}")
+ try:
+ files_to_index = github_client.get_repository_files(repo_full_name)
+ if not files_to_index:
+ logger.info(
+ f"No indexable files found in repository: {repo_full_name}"
+ )
+ continue
+
+ logger.info(
+ f"Found {len(files_to_index)} files to process in {repo_full_name}"
+ )
+
+ for file_info in files_to_index:
+ file_path = file_info.get("path")
+ file_url = file_info.get("url")
+ file_sha = file_info.get("sha")
+ file_type = file_info.get("type") # 'code' or 'doc'
+ full_path_key = f"{repo_full_name}/{file_path}"
+
+ if not file_path or not file_url or not file_sha:
+ logger.warning(
+ f"Skipping file with missing info in {repo_full_name}: {file_info}"
+ )
+ continue
+
+ # Get file content
+ file_content = github_client.get_file_content(
+ repo_full_name, file_path
+ )
+
+ if file_content is None:
+ logger.warning(
+ f"Could not retrieve content for {full_path_key}. Skipping."
+ )
+ continue # Skip if content fetch failed
+
+ content_hash = generate_content_hash(file_content, search_space_id)
+
+ # Check if document with this content hash already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for file {full_path_key}. Skipping processing."
+ )
+ continue
+
+ # Use file_content directly for chunking, maybe summary for main content?
+ # For now, let's use the full content for both, might need refinement
+ summary_content = f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..." # Simple summary
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Chunk the content
+ try:
+ chunks_data = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(
+ chunk.text
+ ),
+ )
+ for chunk in config.code_chunker_instance.chunk(
+ file_content
+ )
+ ]
+ except Exception as chunk_err:
+ logger.error(
+ f"Failed to chunk file {full_path_key}: {chunk_err}"
+ )
+ errors.append(
+ f"Chunking failed for {full_path_key}: {chunk_err}"
+ )
+ continue # Skip this file if chunking fails
+
+ doc_metadata = {
+ "repository_full_name": repo_full_name,
+ "file_path": file_path,
+ "full_path": full_path_key, # For easier lookup
+ "url": file_url,
+ "sha": file_sha,
+ "type": file_type,
+ "indexed_at": datetime.now(UTC).isoformat(),
+ }
+
+ # Create new document
+ logger.info(f"Creating new document for file: {full_path_key}")
+ document = Document(
+ title=f"GitHub - {file_path}",
+ document_type=DocumentType.GITHUB_CONNECTOR,
+ document_metadata=doc_metadata,
+ content=summary_content, # Store summary
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ search_space_id=search_space_id,
+ chunks=chunks_data, # Associate chunks directly
+ )
+ session.add(document)
+ documents_processed += 1
+
+ except Exception as repo_err:
+ logger.error(
+ f"Failed to process repository {repo_full_name}: {repo_err}"
+ )
+ errors.append(f"Failed processing {repo_full_name}: {repo_err}")
+
+ # Commit all changes at the end
+ await session.commit()
+ logger.info(
+ f"Finished GitHub indexing for connector {connector_id}. Processed {documents_processed} files."
+ )
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed GitHub indexing for connector {connector_id}",
+ {
+ "documents_processed": documents_processed,
+ "errors_count": len(errors),
+ "repo_count": len(repo_full_names_to_index),
+ },
+ )
+
+ except SQLAlchemyError as db_err:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during GitHub indexing for connector {connector_id}",
+ str(db_err),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(
+ f"Database error during GitHub indexing for connector {connector_id}: {db_err}"
+ )
+ errors.append(f"Database error: {db_err}")
+ return documents_processed, "; ".join(errors) if errors else str(db_err)
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Unexpected error during GitHub indexing for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(
+ f"Unexpected error during GitHub indexing for connector {connector_id}: {e}",
+ exc_info=True,
+ )
+ errors.append(f"Unexpected error: {e}")
+ return documents_processed, "; ".join(errors) if errors else str(e)
+
+ error_message = "; ".join(errors) if errors else None
+ return documents_processed, error_message
+
+
+async def index_linear_issues(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Linear issues and comments.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Linear connector
+ search_space_id: ID of the search space to store documents in
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="linear_issues_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Linear issues indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Retrieving Linear connector {connector_id} from database",
+ {"stage": "connector_retrieval"},
+ )
+
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.LINEAR_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a Linear connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return (
+ 0,
+ f"Connector with ID {connector_id} not found or is not a Linear connector",
+ )
+
+ # Get the Linear token from the connector config
+ linear_token = connector.config.get("LINEAR_API_KEY")
+ if not linear_token:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Linear API token not found in connector config for connector {connector_id}",
+ "Missing Linear token",
+ {"error_type": "MissingToken"},
+ )
+ return 0, "Linear API token not found in connector config"
+
+ # Initialize Linear client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Linear client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ linear_client = LinearConnector(token=linear_token)
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now()
+
+ # Use last_indexed_at as start date if available, otherwise use 365 days ago
+ if connector.last_indexed_at:
+ # Convert dates to be comparable (both timezone-naive)
+ last_indexed_naive = (
+ connector.last_indexed_at.replace(tzinfo=None)
+ if connector.last_indexed_at.tzinfo
+ else connector.last_indexed_at
+ )
+
+ # Check if last_indexed_at is in the future or after end_date
+ if last_indexed_naive > calculated_end_date:
+ logger.warning(
+ f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
+ )
+ calculated_start_date = calculated_end_date - timedelta(days=365)
+ else:
+ calculated_start_date = last_indexed_naive
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(
+ days=365
+ ) # Use 365 days as default
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided
+ start_date_str = (
+ start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
+ )
+ end_date_str = (
+ end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
+ )
+ else:
+ # Use provided dates
+ start_date_str = start_date
+ end_date_str = end_date
+
+ logger.info(f"Fetching Linear issues from {start_date_str} to {end_date_str}")
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Linear issues from {start_date_str} to {end_date_str}",
+ {
+ "stage": "fetch_issues",
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ },
+ )
+
+ # Get issues within date range
+ try:
+ issues, error = linear_client.get_issues_by_date_range(
+ start_date=start_date_str, end_date=end_date_str, include_comments=True
+ )
+
+ if error:
+ logger.error(f"Failed to get Linear issues: {error}")
+
+ # Don't treat "No issues found" as an error that should stop indexing
+ if "No issues found" in error:
+ logger.info(
+ "No issues found is not a critical error, continuing with update"
+ )
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ await session.commit()
+ logger.info(
+ f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
+ )
+ return 0, None
+ else:
+ return 0, f"Failed to get Linear issues: {error}"
+
+ logger.info(f"Retrieved {len(issues)} issues from Linear API")
+
+ except Exception as e:
+ logger.error(f"Exception when calling Linear API: {e!s}", exc_info=True)
+ return 0, f"Failed to get Linear issues: {e!s}"
+
+ if not issues:
+ logger.info("No Linear issues found for the specified date range")
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ await session.commit()
+ logger.info(
+ f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
+ )
+ return 0, None # Return None instead of error message when no issues found
+
+ # Log issue IDs and titles for debugging
+ logger.info("Issues retrieved from Linear API:")
+ for idx, issue in enumerate(issues[:10]): # Log first 10 issues
+ logger.info(
+ f" {idx + 1}. {issue.get('identifier', 'Unknown')} - {issue.get('title', 'Unknown')} - Created: {issue.get('createdAt', 'Unknown')} - Updated: {issue.get('updatedAt', 'Unknown')}"
+ )
+ if len(issues) > 10:
+ logger.info(f" ...and {len(issues) - 10} more issues")
+
+ # Track the number of documents indexed
+ documents_indexed = 0
+ documents_skipped = 0
+ skipped_issues = []
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting to process {len(issues)} Linear issues",
+ {"stage": "process_issues", "total_issues": len(issues)},
+ )
+
+ # Process each issue
+ for issue in issues:
+ try:
+ issue_id = issue.get("key")
+ issue_identifier = issue.get("id", "")
+ issue_title = issue.get("key", "")
+
+ if not issue_id or not issue_title:
+ logger.warning(
+ f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
+ )
+ skipped_issues.append(
+ f"{issue_identifier or 'Unknown'} (missing data)"
+ )
+ documents_skipped += 1
+ continue
+
+ # Format the issue first to get well-structured data
+ formatted_issue = linear_client.format_issue(issue)
+
+ # Convert issue to markdown format
+ issue_content = linear_client.format_issue_to_markdown(formatted_issue)
+
+ if not issue_content:
+ logger.warning(
+ f"Skipping issue with no content: {issue_identifier} - {issue_title}"
+ )
+ skipped_issues.append(f"{issue_identifier} (no content)")
+ documents_skipped += 1
+ continue
+
+ # Create a short summary for the embedding
+ # This avoids using the LLM and just uses the issue data directly
+ state = formatted_issue.get("state", "Unknown")
+ description = formatted_issue.get("description", "")
+ # Truncate description if it's too long for the summary
+ if description and len(description) > 500:
+ description = description[:497] + "..."
+
+ # Create a simple summary from the issue data
+ summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
+ if description:
+ summary_content += f"Description: {description}\n\n"
+
+ # Add comment count
+ comment_count = len(formatted_issue.get("comments", []))
+ summary_content += f"Comments: {comment_count}"
+
+ content_hash = generate_content_hash(issue_content, search_space_id)
+
+ # Check if document with this content hash already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate embedding for the summary
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks - using the full issue content with comments
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(issue_content)
+ ]
+
+ # Create and store new document
+ logger.info(
+ f"Creating new document for issue {issue_identifier} - {issue_title}"
+ )
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Linear - {issue_identifier}: {issue_title}",
+ document_type=DocumentType.LINEAR_CONNECTOR,
+ document_metadata={
+ "issue_id": issue_id,
+ "issue_identifier": issue_identifier,
+ "issue_title": issue_title,
+ "state": state,
+ "comment_count": comment_count,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(
+ f"Successfully indexed new issue {issue_identifier} - {issue_title}"
+ )
+
+ except Exception as e:
+ logger.error(
+ f"Error processing issue {issue.get('identifier', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ skipped_issues.append(
+ f"{issue.get('identifier', 'Unknown')} (processing error)"
+ )
+ documents_skipped += 1
+ continue # Skip this issue and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ total_processed = documents_indexed
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ # Commit all changes
+ await session.commit()
+ logger.info("Successfully committed all Linear document changes to database")
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Linear indexing for connector {connector_id}",
+ {
+ "issues_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_issues_count": len(skipped_issues),
+ },
+ )
+
+ logger.info(
+ f"Linear indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
+ )
+ return (
+ total_processed,
+ None,
+ ) # Return None as the error message to indicate success
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Linear indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}", exc_info=True)
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Linear issues for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Linear issues: {e!s}", exc_info=True)
+ return 0, f"Failed to index Linear issues: {e!s}"
+
+
+async def index_discord_messages(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Discord messages from all accessible channels.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Discord connector
+ search_space_id: ID of the search space to store documents in
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="discord_messages_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Discord messages indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Retrieving Discord connector {connector_id} from database",
+ {"stage": "connector_retrieval"},
+ )
+
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.DISCORD_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a Discord connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return (
+ 0,
+ f"Connector with ID {connector_id} not found or is not a Discord connector",
+ )
+
+ # Get the Discord token from the connector config
+ discord_token = connector.config.get("DISCORD_BOT_TOKEN")
+ if not discord_token:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Discord token not found in connector config for connector {connector_id}",
+ "Missing Discord token",
+ {"error_type": "MissingToken"},
+ )
+ return 0, "Discord token not found in connector config"
+
+ logger.info(f"Starting Discord indexing for connector {connector_id}")
+
+ # Initialize Discord client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Discord client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ discord_client = DiscordConnector(token=discord_token)
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now(UTC)
+
+ # Use last_indexed_at as start date if available, otherwise use 365 days ago
+ if connector.last_indexed_at:
+ calculated_start_date = connector.last_indexed_at.replace(tzinfo=UTC)
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(days=365)
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided, convert to ISO format for Discord API
+ if start_date is None:
+ start_date_iso = calculated_start_date.isoformat()
+ else:
+ # Convert YYYY-MM-DD to ISO format
+ start_date_iso = (
+ datetime.strptime(start_date, "%Y-%m-%d")
+ .replace(tzinfo=UTC)
+ .isoformat()
+ )
+
+ if end_date is None:
+ end_date_iso = calculated_end_date.isoformat()
+ else:
+ # Convert YYYY-MM-DD to ISO format
+ end_date_iso = (
+ datetime.strptime(end_date, "%Y-%m-%d")
+ .replace(tzinfo=UTC)
+ .isoformat()
+ )
+ else:
+ # Convert provided dates to ISO format for Discord API
+ start_date_iso = (
+ datetime.strptime(start_date, "%Y-%m-%d")
+ .replace(tzinfo=UTC)
+ .isoformat()
+ )
+ end_date_iso = (
+ datetime.strptime(end_date, "%Y-%m-%d").replace(tzinfo=UTC).isoformat()
+ )
+
+ logger.info(
+ f"Indexing Discord messages from {start_date_iso} to {end_date_iso}"
+ )
+
+ documents_indexed = 0
+ documents_skipped = 0
+ skipped_channels = []
+
+ try:
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting Discord bot and fetching guilds for connector {connector_id}",
+ {"stage": "fetch_guilds"},
+ )
+
+ logger.info("Starting Discord bot to fetch guilds")
+ discord_client._bot_task = asyncio.create_task(discord_client.start_bot())
+ await discord_client._wait_until_ready()
+
+ logger.info("Fetching Discord guilds")
+ guilds = await discord_client.get_guilds()
+ logger.info(f"Found {len(guilds)} guilds")
+ except Exception as e:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Discord guilds for connector {connector_id}",
+ str(e),
+ {"error_type": "GuildFetchError"},
+ )
+ logger.error(f"Failed to get Discord guilds: {e!s}", exc_info=True)
+ await discord_client.close_bot()
+ return 0, f"Failed to get Discord guilds: {e!s}"
+ if not guilds:
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Discord guilds found for connector {connector_id}",
+ {"guilds_found": 0},
+ )
+ logger.info("No Discord guilds found to index")
+ await discord_client.close_bot()
+ return 0, "No Discord guilds found"
+
+ # Process each guild and channel
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Starting to process {len(guilds)} Discord guilds",
+ {"stage": "process_guilds", "total_guilds": len(guilds)},
+ )
+
+ for guild in guilds:
+ guild_id = guild["id"]
+ guild_name = guild["name"]
+ logger.info(f"Processing guild: {guild_name} ({guild_id})")
+ try:
+ channels = await discord_client.get_text_channels(guild_id)
+ if not channels:
+ logger.info(f"No channels found in guild {guild_name}. Skipping.")
+ skipped_channels.append(f"{guild_name} (no channels)")
+ documents_skipped += 1
+ continue
+
+ for channel in channels:
+ channel_id = channel["id"]
+ channel_name = channel["name"]
+
+ try:
+ messages = await discord_client.get_channel_history(
+ channel_id=channel_id,
+ start_date=start_date_iso,
+ end_date=end_date_iso,
+ )
+ except Exception as e:
+ logger.error(
+ f"Failed to get messages for channel {channel_name}: {e!s}"
+ )
+ skipped_channels.append(
+ f"{guild_name}#{channel_name} (fetch error)"
+ )
+ documents_skipped += 1
+ continue
+
+ if not messages:
+ logger.info(
+ f"No messages found in channel {channel_name} for the specified date range."
+ )
+ documents_skipped += 1
+ continue
+
+ # Format messages
+ formatted_messages = []
+ for msg in messages:
+ # Skip system messages if needed (Discord has some types)
+ if msg.get("type") in ["system"]:
+ continue
+ formatted_messages.append(msg)
+
+ if not formatted_messages:
+ logger.info(
+ f"No valid messages found in channel {channel_name} after filtering."
+ )
+ documents_skipped += 1
+ continue
+
+ # Convert messages to markdown format
+ channel_content = (
+ f"# Discord Channel: {guild_name} / {channel_name}\n\n"
+ )
+ for msg in formatted_messages:
+ user_name = msg.get("author_name", "Unknown User")
+ timestamp = msg.get("created_at", "Unknown Time")
+ text = msg.get("content", "")
+ channel_content += (
+ f"## {user_name} ({timestamp})\n\n{text}\n\n---\n\n"
+ )
+
+ # Format document metadata
+ metadata_sections = [
+ (
+ "METADATA",
+ [
+ f"GUILD_NAME: {guild_name}",
+ f"GUILD_ID: {guild_id}",
+ f"CHANNEL_NAME: {channel_name}",
+ f"CHANNEL_ID: {channel_id}",
+ f"MESSAGE_COUNT: {len(formatted_messages)}",
+ ],
+ ),
+ (
+ "CONTENT",
+ [
+ "FORMAT: markdown",
+ "TEXT_START",
+ channel_content,
+ "TEXT_END",
+ ],
+ ),
+ ]
+
+ # Build the document string
+ document_parts = []
+ document_parts.append("")
+ for section_title, section_content in metadata_sections:
+ document_parts.append(f"<{section_title}>")
+ document_parts.extend(section_content)
+ document_parts.append(f"{section_title}>")
+ document_parts.append("")
+ combined_document_string = "\n".join(document_parts)
+ content_hash = generate_content_hash(
+ combined_document_string, search_space_id
+ )
+
+ # Check if document with this content hash already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for channel {guild_name}#{channel_name}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Get user's long context LLM
+ user_llm = await get_user_long_context_llm(session, user_id)
+ if not user_llm:
+ logger.error(
+ f"No long context LLM configured for user {user_id}"
+ )
+ skipped_channels.append(
+ f"{guild_name}#{channel_name} (no LLM configured)"
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate summary using summary_chain
+ summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
+ summary_result = await summary_chain.ainvoke(
+ {"document": combined_document_string}
+ )
+ summary_content = summary_result.content
+ summary_embedding = await asyncio.to_thread(
+ config.embedding_model_instance.embed, summary_content
+ )
+
+ # Process chunks
+ raw_chunks = await asyncio.to_thread(
+ config.chunker_instance.chunk, channel_content
+ )
+
+ chunk_texts = [
+ chunk.text for chunk in raw_chunks if chunk.text.strip()
+ ]
+ chunk_embeddings = await asyncio.to_thread(
+ lambda texts: [
+ config.embedding_model_instance.embed(t) for t in texts
+ ],
+ chunk_texts,
+ )
+
+ chunks = [
+ Chunk(content=raw_chunk.text, embedding=embedding)
+ for raw_chunk, embedding in zip(
+ raw_chunks, chunk_embeddings, strict=False
+ )
+ ]
+
+ # Create and store new document
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Discord - {guild_name}#{channel_name}",
+ document_type=DocumentType.DISCORD_CONNECTOR,
+ document_metadata={
+ "guild_name": guild_name,
+ "guild_id": guild_id,
+ "channel_name": channel_name,
+ "channel_id": channel_id,
+ "message_count": len(formatted_messages),
+ "start_date": start_date_iso,
+ "end_date": end_date_iso,
+ "indexed_at": datetime.now(UTC).strftime(
+ "%Y-%m-%d %H:%M:%S"
+ ),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(
+ f"Successfully indexed new channel {guild_name}#{channel_name} with {len(formatted_messages)} messages"
+ )
+
+ except Exception as e:
+ logger.error(
+ f"Error processing guild {guild_name}: {e!s}", exc_info=True
+ )
+ skipped_channels.append(f"{guild_name} (processing error)")
+ documents_skipped += 1
+ continue
+
+ if update_last_indexed and documents_indexed > 0:
+ connector.last_indexed_at = datetime.now(UTC)
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ await session.commit()
+ await discord_client.close_bot()
+
+ # Prepare result message
+ result_message = None
+ if skipped_channels:
+ result_message = f"Processed {documents_indexed} channels. Skipped {len(skipped_channels)} channels: {', '.join(skipped_channels)}"
+ else:
+ result_message = f"Processed {documents_indexed} channels."
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Discord indexing for connector {connector_id}",
+ {
+ "channels_processed": documents_indexed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_channels_count": len(skipped_channels),
+ "guilds_processed": len(guilds),
+ "result_message": result_message,
+ },
+ )
+
+ logger.info(
+ f"Discord indexing completed: {documents_indexed} new channels, {documents_skipped} skipped"
+ )
+ return documents_indexed, result_message
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Discord indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(
+ f"Database error during Discord indexing: {db_error!s}", exc_info=True
+ )
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Discord messages for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Discord messages: {e!s}", exc_info=True)
+ return 0, f"Failed to index Discord messages: {e!s}"
+
+
+async def index_jira_issues(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Jira issues and comments.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Jira connector
+ search_space_id: ID of the search space to store documents in
+ user_id: User ID
+ start_date: Start date for indexing (YYYY-MM-DD format)
+ end_date: End date for indexing (YYYY-MM-DD format)
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="jira_issues_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Jira issues indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector from the database
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.JIRA_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return 0, f"Connector with ID {connector_id} not found"
+
+ # Get the Jira credentials from the connector config
+ jira_email = connector.config.get("JIRA_EMAIL")
+ jira_api_token = connector.config.get("JIRA_API_TOKEN")
+ jira_base_url = connector.config.get("JIRA_BASE_URL")
+
+ if not jira_email or not jira_api_token or not jira_base_url:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Jira credentials not found in connector config for connector {connector_id}",
+ "Missing Jira credentials",
+ {"error_type": "MissingCredentials"},
+ )
+ return 0, "Jira credentials not found in connector config"
+
+ # Initialize Jira client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Jira client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ jira_client = JiraConnector(
+ base_url=jira_base_url, email=jira_email, api_token=jira_api_token
+ )
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now()
+
+ # Use last_indexed_at as start date if available, otherwise use 365 days ago
+ if connector.last_indexed_at:
+ # Convert dates to be comparable (both timezone-naive)
+ last_indexed_naive = (
+ connector.last_indexed_at.replace(tzinfo=None)
+ if connector.last_indexed_at.tzinfo
+ else connector.last_indexed_at
+ )
+
+ # Check if last_indexed_at is in the future or after end_date
+ if last_indexed_naive > calculated_end_date:
+ logger.warning(
+ f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
+ )
+ calculated_start_date = calculated_end_date - timedelta(days=365)
+ else:
+ calculated_start_date = last_indexed_naive
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(
+ days=365
+ ) # Use 365 days as default
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided
+ start_date_str = (
+ start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
+ )
+ end_date_str = (
+ end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
+ )
+ else:
+ # Use provided dates
+ start_date_str = start_date
+ end_date_str = end_date
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Jira issues from {start_date_str} to {end_date_str}",
+ {
+ "stage": "fetching_issues",
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ },
+ )
+
+ # Get issues within date range
+ try:
+ issues, error = jira_client.get_issues_by_date_range(
+ start_date=start_date_str, end_date=end_date_str, include_comments=True
+ )
+
+ if error:
+ logger.error(f"Failed to get Jira issues: {error}")
+
+ # Don't treat "No issues found" as an error that should stop indexing
+ if "No issues found" in error:
+ logger.info(
+ "No issues found is not a critical error, continuing with update"
+ )
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ await session.commit()
+ logger.info(
+ f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
+ )
+
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Jira issues found in date range {start_date_str} to {end_date_str}",
+ {"issues_found": 0},
+ )
+ return 0, None
+ else:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Jira issues: {error}",
+ "API Error",
+ {"error_type": "APIError"},
+ )
+ return 0, f"Failed to get Jira issues: {error}"
+
+ logger.info(f"Retrieved {len(issues)} issues from Jira API")
+
+ except Exception as e:
+ logger.error(f"Error fetching Jira issues: {e!s}", exc_info=True)
+ return 0, f"Error fetching Jira issues: {e!s}"
+
+ # Process and index each issue
+ documents_indexed = 0
+ skipped_issues = []
+ documents_skipped = 0
+
+ for issue in issues:
+ try:
+ issue_id = issue.get("key")
+ issue_identifier = issue.get("key", "")
+ issue_title = issue.get("id", "")
+
+ if not issue_id or not issue_title:
+ logger.warning(
+ f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
+ )
+ skipped_issues.append(
+ f"{issue_identifier or 'Unknown'} (missing data)"
+ )
+ documents_skipped += 1
+ continue
+
+ # Format the issue for better readability
+ formatted_issue = jira_client.format_issue(issue)
+
+ # Convert to markdown
+ issue_content = jira_client.format_issue_to_markdown(formatted_issue)
+
+ if not issue_content:
+ logger.warning(
+ f"Skipping issue with no content: {issue_identifier} - {issue_title}"
+ )
+ skipped_issues.append(f"{issue_identifier} (no content)")
+ documents_skipped += 1
+ continue
+
+ # Create a simple summary
+ summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
+ if formatted_issue.get("description"):
+ summary_content += (
+ f"Description: {formatted_issue.get('description')}\n\n"
+ )
+
+ # Add comment count
+ comment_count = len(formatted_issue.get("comments", []))
+ summary_content += f"Comments: {comment_count}"
+
+ # Generate content hash
+ content_hash = generate_content_hash(issue_content, search_space_id)
+
+ # Check if document already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate embedding for the summary
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks - using the full issue content with comments
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(issue_content)
+ ]
+
+ # Create and store new document
+ logger.info(
+ f"Creating new document for issue {issue_identifier} - {issue_title}"
+ )
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Jira - {issue_identifier}: {issue_title}",
+ document_type=DocumentType.JIRA_CONNECTOR,
+ document_metadata={
+ "issue_id": issue_id,
+ "issue_identifier": issue_identifier,
+ "issue_title": issue_title,
+ "state": formatted_issue.get("status", "Unknown"),
+ "comment_count": comment_count,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(
+ f"Successfully indexed new issue {issue_identifier} - {issue_title}"
+ )
+
+ except Exception as e:
+ logger.error(
+ f"Error processing issue {issue.get('identifier', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ skipped_issues.append(
+ f"{issue.get('identifier', 'Unknown')} (processing error)"
+ )
+ documents_skipped += 1
+ continue # Skip this issue and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ total_processed = documents_indexed
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ # Commit all changes
+ await session.commit()
+ logger.info("Successfully committed all JIRA document changes to database")
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed JIRA indexing for connector {connector_id}",
+ {
+ "issues_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_issues_count": len(skipped_issues),
+ },
+ )
+
+ logger.info(
+ f"JIRA indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
+ )
+ return (
+ total_processed,
+ None,
+ ) # Return None as the error message to indicate success
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during JIRA indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}", exc_info=True)
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index JIRA issues for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index JIRA issues: {e!s}", exc_info=True)
+ return 0, f"Failed to index JIRA issues: {e!s}"
+
+
+async def index_confluence_pages(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Confluence pages and comments.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Confluence connector
+ search_space_id: ID of the search space to store documents in
+ user_id: User ID
+ start_date: Start date for indexing (YYYY-MM-DD format)
+ end_date: End date for indexing (YYYY-MM-DD format)
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="confluence_pages_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Confluence pages indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector from the database
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.CONFLUENCE_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return 0, f"Connector with ID {connector_id} not found"
+
+ # Get the Confluence credentials from the connector config
+ confluence_email = connector.config.get("CONFLUENCE_EMAIL")
+ confluence_api_token = connector.config.get("CONFLUENCE_API_TOKEN")
+ confluence_base_url = connector.config.get("CONFLUENCE_BASE_URL")
+
+ if not confluence_email or not confluence_api_token or not confluence_base_url:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Confluence credentials not found in connector config for connector {connector_id}",
+ "Missing Confluence credentials",
+ {"error_type": "MissingCredentials"},
+ )
+ return 0, "Confluence credentials not found in connector config"
+
+ # Initialize Confluence client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Confluence client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ confluence_client = ConfluenceConnector(
+ base_url=confluence_base_url,
+ email=confluence_email,
+ api_token=confluence_api_token,
+ )
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now()
+
+ # Use last_indexed_at as start date if available, otherwise use 365 days ago
+ if connector.last_indexed_at:
+ # Convert dates to be comparable (both timezone-naive)
+ last_indexed_naive = (
+ connector.last_indexed_at.replace(tzinfo=None)
+ if connector.last_indexed_at.tzinfo
+ else connector.last_indexed_at
+ )
+
+ # Check if last_indexed_at is in the future or after end_date
+ if last_indexed_naive > calculated_end_date:
+ logger.warning(
+ f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
+ )
+ calculated_start_date = calculated_end_date - timedelta(days=365)
+ else:
+ calculated_start_date = last_indexed_naive
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(
+ days=365
+ ) # Use 365 days as default
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided
+ start_date_str = (
+ start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
+ )
+ end_date_str = (
+ end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
+ )
+ else:
+ # Use provided dates
+ start_date_str = start_date
+ end_date_str = end_date
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Confluence pages from {start_date_str} to {end_date_str}",
+ {
+ "stage": "fetching_pages",
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ },
+ )
+
+ # Get pages within date range
+ try:
+ pages, error = confluence_client.get_pages_by_date_range(
+ start_date=start_date_str, end_date=end_date_str, include_comments=True
+ )
+
+ if error:
+ logger.error(f"Failed to get Confluence pages: {error}")
+
+ # Don't treat "No pages found" as an error that should stop indexing
+ if "No pages found" in error:
+ logger.info(
+ "No pages found is not a critical error, continuing with update"
+ )
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ await session.commit()
+ logger.info(
+ f"Updated last_indexed_at to {connector.last_indexed_at} despite no pages found"
+ )
+
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Confluence pages found in date range {start_date_str} to {end_date_str}",
+ {"pages_found": 0},
+ )
+ return 0, None
+ else:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Confluence pages: {error}",
+ "API Error",
+ {"error_type": "APIError"},
+ )
+ return 0, f"Failed to get Confluence pages: {error}"
+
+ logger.info(f"Retrieved {len(pages)} pages from Confluence API")
+
+ except Exception as e:
+ logger.error(f"Error fetching Confluence pages: {e!s}", exc_info=True)
+ return 0, f"Error fetching Confluence pages: {e!s}"
+
+ # Process and index each page
+ documents_indexed = 0
+ skipped_pages = []
+ documents_skipped = 0
+
+ for page in pages:
+ try:
+ page_id = page.get("id")
+ page_title = page.get("title", "")
+ space_id = page.get("spaceId", "")
+
+ if not page_id or not page_title:
+ logger.warning(
+ f"Skipping page with missing ID or title: {page_id or 'Unknown'}"
+ )
+ skipped_pages.append(f"{page_title or 'Unknown'} (missing data)")
+ documents_skipped += 1
+ continue
+
+ # Extract page content
+ page_content = ""
+ if page.get("body") and page["body"].get("storage"):
+ page_content = page["body"]["storage"].get("value", "")
+
+ # Add comments to content
+ comments = page.get("comments", [])
+ comments_content = ""
+ if comments:
+ comments_content = "\n\n## Comments\n\n"
+ for comment in comments:
+ comment_body = ""
+ if comment.get("body") and comment["body"].get("storage"):
+ comment_body = comment["body"]["storage"].get("value", "")
+
+ comment_author = comment.get("version", {}).get(
+ "authorId", "Unknown"
+ )
+ comment_date = comment.get("version", {}).get("createdAt", "")
+
+ comments_content += f"**Comment by {comment_author}** ({comment_date}):\n{comment_body}\n\n"
+
+ # Combine page content with comments
+ full_content = f"# {page_title}\n\n{page_content}{comments_content}"
+
+ if not full_content.strip():
+ logger.warning(f"Skipping page with no content: {page_title}")
+ skipped_pages.append(f"{page_title} (no content)")
+ documents_skipped += 1
+ continue
+
+ # Create a simple summary
+ summary_content = (
+ f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
+ )
+ if page_content:
+ # Take first 500 characters of content for summary
+ content_preview = page_content[:500]
+ if len(page_content) > 500:
+ content_preview += "..."
+ summary_content += f"Content Preview: {content_preview}\n\n"
+
+ # Add comment count
+ comment_count = len(comments)
+ summary_content += f"Comments: {comment_count}"
+
+ # Generate content hash
+ content_hash = generate_content_hash(full_content, search_space_id)
+
+ # Check if document already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for page {page_title}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate embedding for the summary
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks - using the full page content with comments
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(full_content)
+ ]
+
+ # Create and store new document
+ logger.info(f"Creating new document for page {page_title}")
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Confluence - {page_title}",
+ document_type=DocumentType.CONFLUENCE_CONNECTOR,
+ document_metadata={
+ "page_id": page_id,
+ "page_title": page_title,
+ "space_id": space_id,
+ "comment_count": comment_count,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(f"Successfully indexed new page {page_title}")
+
+ except Exception as e:
+ logger.error(
+ f"Error processing page {page.get('title', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ skipped_pages.append(
+ f"{page.get('title', 'Unknown')} (processing error)"
+ )
+ documents_skipped += 1
+ continue # Skip this page and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ total_processed = documents_indexed
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ # Commit all changes
+ await session.commit()
+ logger.info(
+ "Successfully committed all Confluence document changes to database"
+ )
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Confluence indexing for connector {connector_id}",
+ {
+ "pages_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_pages_count": len(skipped_pages),
+ },
+ )
+
+ logger.info(
+ f"Confluence indexing completed: {documents_indexed} new pages, {documents_skipped} skipped"
+ )
+ return (
+ total_processed,
+ None,
+ ) # Return None as the error message to indicate success
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Confluence indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}", exc_info=True)
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Confluence pages for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Confluence pages: {e!s}", exc_info=True)
+ return 0, f"Failed to index Confluence pages: {e!s}"
+
+
+async def index_clickup_tasks(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index tasks from ClickUp workspace.
+
+ Args:
+ session: Database session
+ connector_id: ID of the ClickUp connector
+ search_space_id: ID of the search space
+ user_id: ID of the user
+ start_date: Start date for filtering tasks (YYYY-MM-DD format)
+ end_date: End date for filtering tasks (YYYY-MM-DD format)
+ update_last_indexed: Whether to update the last_indexed_at timestamp
+
+ Returns:
+ Tuple of (number of indexed tasks, error message if any)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="clickup_tasks_indexing",
+ source="connector_indexing_task",
+ message=f"Starting ClickUp tasks indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get connector configuration
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ error_msg = f"ClickUp connector with ID {connector_id} not found"
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found or is not a ClickUp connector",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return 0, error_msg
+
+ # Extract ClickUp configuration
+ clickup_api_token = connector.config.get("CLICKUP_API_TOKEN")
+
+ if not clickup_api_token:
+ error_msg = "ClickUp API token not found in connector configuration"
+ await task_logger.log_task_failure(
+ log_entry,
+ f"ClickUp API token not found in connector config for connector {connector_id}",
+ "Missing ClickUp token",
+ {"error_type": "MissingToken"},
+ )
+ return 0, error_msg
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing ClickUp client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ clickup_client = ClickUpConnector(api_token=clickup_api_token)
+
+ # Get authorized workspaces
+ await task_logger.log_task_progress(
+ log_entry,
+ "Fetching authorized ClickUp workspaces",
+ {"stage": "workspace_fetching"},
+ )
+
+ workspaces_response = clickup_client.get_authorized_workspaces()
+ workspaces = workspaces_response.get("teams", [])
+
+ if not workspaces:
+ error_msg = "No authorized ClickUp workspaces found"
+ await task_logger.log_task_failure(
+ log_entry,
+ f"No authorized ClickUp workspaces found for connector {connector_id}",
+ "No workspaces found",
+ {"error_type": "NoWorkspacesFound"},
+ )
+ return 0, error_msg
+
+ # Process and index each task
+ documents_indexed = 0
+ documents_skipped = 0
+
+ for workspace in workspaces:
+ workspace_id = workspace.get("id")
+ workspace_name = workspace.get("name", "Unknown Workspace")
+
+ if not workspace_id:
+ continue
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Processing workspace: {workspace_name}",
+ {"stage": "workspace_processing", "workspace_id": workspace_id},
+ )
+
+ # Fetch tasks from workspace
+ if start_date and end_date:
+ tasks, error = clickup_client.get_tasks_in_date_range(
+ workspace_id=workspace_id,
+ start_date=start_date,
+ end_date=end_date,
+ include_closed=True,
+ )
+ if error:
+ logger.warning(
+ f"Error fetching tasks from workspace {workspace_name}: {error}"
+ )
+ continue
+ else:
+ tasks = clickup_client.get_workspace_tasks(
+ workspace_id=workspace_id, include_closed=True
+ )
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Found {len(tasks)} tasks in workspace {workspace_name}",
+ {"stage": "tasks_found", "task_count": len(tasks)},
+ )
+
+ # Process each task
+ for task in tasks:
+ try:
+ task_id = task.get("id")
+ task_name = task.get("name", "Untitled Task")
+ task_description = task.get("description", "")
+ task_status = task.get("status", {}).get("status", "Unknown")
+ task_priority = (
+ task.get("priority", {}).get("priority", "Unknown")
+ if task.get("priority")
+ else "None"
+ )
+ task_assignees = task.get("assignees", [])
+ task_due_date = task.get("due_date")
+ task_created = task.get("date_created")
+ task_updated = task.get("date_updated")
+
+ # Get list and space information
+ task_list = task.get("list", {})
+ task_list_name = task_list.get("name", "Unknown List")
+ task_space = task.get("space", {})
+ task_space_name = task_space.get("name", "Unknown Space")
+
+ # Create task content
+ content_parts = [f"Task: {task_name}"]
+
+ if task_description:
+ content_parts.append(f"Description: {task_description}")
+
+ content_parts.extend(
+ [
+ f"Status: {task_status}",
+ f"Priority: {task_priority}",
+ f"List: {task_list_name}",
+ f"Space: {task_space_name}",
+ ]
+ )
+
+ if task_assignees:
+ assignee_names = [
+ assignee.get("username", "Unknown")
+ for assignee in task_assignees
+ ]
+ content_parts.append(f"Assignees: {', '.join(assignee_names)}")
+
+ if task_due_date:
+ content_parts.append(f"Due Date: {task_due_date}")
+
+ task_content = "\n".join(content_parts)
+
+ if not task_content.strip():
+ logger.warning(f"Skipping task with no content: {task_name}")
+ continue
+
+ # Generate content hash
+ content_hash = generate_content_hash(task_content, search_space_id)
+
+ # Check if document already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for task {task_name}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate embedding for the summary
+ summary_embedding = config.embedding_model_instance.embed(
+ task_content
+ )
+
+ # Process chunks - using the full page content with comments
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(task_content)
+ ]
+
+ # Create and store new document
+ logger.info(f"Creating new document for task {task_name}")
+
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Task - {task_name}",
+ document_type=DocumentType.CLICKUP_CONNECTOR,
+ document_metadata={
+ "task_id": task_id,
+ "task_name": task_name,
+ "task_status": task_status,
+ "task_priority": task_priority,
+ "task_assignees": task_assignees,
+ "task_due_date": task_due_date,
+ "task_created": task_created,
+ "task_updated": task_updated,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=task_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(f"Successfully indexed new task {task_name}")
+
+ except Exception as e:
+ logger.error(
+ f"Error processing task {task.get('name', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ documents_skipped += 1
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ total_processed = documents_indexed
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ # Commit all changes
+ await session.commit()
+ logger.info(
+ "Successfully committed all clickup document changes to database"
+ )
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed clickup indexing for connector {connector_id}",
+ {
+ "pages_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ },
+ )
+
+ logger.info(
+ f"clickup indexing completed: {documents_indexed} new tasks, {documents_skipped} skipped"
+ )
+ return (
+ total_processed,
+ None,
+ ) # Return None as the error message to indicate success
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Cickup indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}", exc_info=True)
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index ClickUp tasks for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index ClickUp tasks: {e!s}", exc_info=True)
+ return 0, f"Failed to index ClickUp tasks: {e!s}"
+
+
+async def index_google_calendar_events(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ start_date: str | None = None,
+ end_date: str | None = None,
+ update_last_indexed: bool = True,
+) -> tuple[int, str | None]:
+ """
+ Index Google Calendar events.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Google Calendar connector
+ search_space_id: ID of the search space to store documents in
+ user_id: User ID
+ start_date: Start date for indexing (YYYY-MM-DD format)
+ end_date: End date for indexing (YYYY-MM-DD format)
+ update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
+
+ Returns:
+ Tuple containing (number of documents indexed, error message or None)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="google_calendar_events_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Google Calendar events indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "start_date": start_date,
+ "end_date": end_date,
+ },
+ )
+
+ try:
+ # Get the connector from the database
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.GOOGLE_CALENDAR_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Connector with ID {connector_id} not found",
+ "Connector not found",
+ {"error_type": "ConnectorNotFound"},
+ )
+ return 0, f"Connector with ID {connector_id} not found"
+
+ # Get the Google Calendar credentials from the connector config
+ credentials = Credentials(
+ token=connector.config.get("token"),
+ refresh_token=connector.config.get("refresh_token"),
+ token_uri=connector.config.get("token_uri"),
+ client_id=connector.config.get("client_id"),
+ client_secret=connector.config.get("client_secret"),
+ scopes=connector.config.get("scopes"),
+ )
+
+ if (
+ not credentials.client_id
+ or not credentials.client_secret
+ or not credentials.refresh_token
+ ):
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Google Calendar credentials not found in connector config for connector {connector_id}",
+ "Missing Google Calendar credentials",
+ {"error_type": "MissingCredentials"},
+ )
+ return 0, "Google Calendar credentials not found in connector config"
+
+ # Initialize Google Calendar client
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Initializing Google Calendar client for connector {connector_id}",
+ {"stage": "client_initialization"},
+ )
+
+ calendar_client = GoogleCalendarConnector(credentials=credentials)
+
+ # Calculate date range
+ if start_date is None or end_date is None:
+ # Fall back to calculating dates based on last_indexed_at
+ calculated_end_date = datetime.now()
+
+ # Use last_indexed_at as start date if available, otherwise use 30 days ago
+ if connector.last_indexed_at:
+ # Convert dates to be comparable (both timezone-naive)
+ last_indexed_naive = (
+ connector.last_indexed_at.replace(tzinfo=None)
+ if connector.last_indexed_at.tzinfo
+ else connector.last_indexed_at
+ )
+
+ # Check if last_indexed_at is in the future or after end_date
+ if last_indexed_naive > calculated_end_date:
+ logger.warning(
+ f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 30 days ago instead."
+ )
+ calculated_start_date = calculated_end_date - timedelta(days=30)
+ else:
+ calculated_start_date = last_indexed_naive
+ logger.info(
+ f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
+ )
+ else:
+ calculated_start_date = calculated_end_date - timedelta(
+ days=30
+ ) # Use 30 days as default for calendar events
+ logger.info(
+ f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (30 days ago) as start date"
+ )
+
+ # Use calculated dates if not provided
+ start_date_str = (
+ start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
+ )
+ end_date_str = (
+ end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
+ )
+ else:
+ # Use provided dates
+ start_date_str = start_date
+ end_date_str = end_date
+
+ await task_logger.log_task_progress(
+ log_entry,
+ f"Fetching Google Calendar events from {start_date_str} to {end_date_str}",
+ {
+ "stage": "fetching_events",
+ "start_date": start_date_str,
+ "end_date": end_date_str,
+ },
+ )
+
+ # Get events within date range from primary calendar
+ try:
+ events, error = calendar_client.get_all_primary_calendar_events(
+ start_date=start_date_str, end_date=end_date_str
+ )
+
+ if error:
+ logger.error(f"Failed to get Google Calendar events: {error}")
+
+ # Don't treat "No events found" as an error that should stop indexing
+ if "No events found" in error:
+ logger.info(
+ "No events found is not a critical error, continuing with update"
+ )
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ await session.commit()
+ logger.info(
+ f"Updated last_indexed_at to {connector.last_indexed_at} despite no events found"
+ )
+
+ await task_logger.log_task_success(
+ log_entry,
+ f"No Google Calendar events found in date range {start_date_str} to {end_date_str}",
+ {"events_found": 0},
+ )
+ return 0, None
+ else:
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to get Google Calendar events: {error}",
+ "API Error",
+ {"error_type": "APIError"},
+ )
+ return 0, f"Failed to get Google Calendar events: {error}"
+
+ logger.info(f"Retrieved {len(events)} events from Google Calendar API")
+
+ except Exception as e:
+ logger.error(f"Error fetching Google Calendar events: {e!s}", exc_info=True)
+ return 0, f"Error fetching Google Calendar events: {e!s}"
+
+ # Process and index each event
+ documents_indexed = 0
+ skipped_events = []
+ documents_skipped = 0
+
+ for event in events:
+ try:
+ event_id = event.get("id")
+ event_summary = event.get("summary", "No Title")
+ calendar_id = event.get("calendarId", "")
+
+ if not event_id:
+ logger.warning(f"Skipping event with missing ID: {event_summary}")
+ skipped_events.append(f"{event_summary} (missing ID)")
+ documents_skipped += 1
+ continue
+
+ # Format event as markdown
+ event_markdown = calendar_client.format_event_to_markdown(event)
+
+ if not event_markdown.strip():
+ logger.warning(f"Skipping event with no content: {event_summary}")
+ skipped_events.append(f"{event_summary} (no content)")
+ documents_skipped += 1
+ continue
+
+ # Create a simple summary for the document
+ start = event.get("start", {})
+ end = event.get("end", {})
+ start_time = start.get("dateTime") or start.get("date", "")
+ end_time = end.get("dateTime") or end.get("date", "")
+ location = event.get("location", "")
+ description = event.get("description", "")
+
+ summary_content = f"Google Calendar Event: {event_summary}\n\n"
+ summary_content += f"Calendar: {calendar_id}\n"
+ summary_content += f"Start: {start_time}\n"
+ summary_content += f"End: {end_time}\n"
+
+ if location:
+ summary_content += f"Location: {location}\n"
+
+ if description:
+ # Take first 300 characters of description for summary
+ desc_preview = description[:300]
+ if len(description) > 300:
+ desc_preview += "..."
+ summary_content += f"Description: {desc_preview}\n"
+
+ # Generate content hash
+ content_hash = generate_content_hash(event_markdown, search_space_id)
+
+ # Check if document already exists
+ existing_doc_by_hash_result = await session.execute(
+ select(Document).where(Document.content_hash == content_hash)
+ )
+ existing_document_by_hash = (
+ existing_doc_by_hash_result.scalars().first()
+ )
+
+ if existing_document_by_hash:
+ logger.info(
+ f"Document with content hash {content_hash} already exists for event {event_summary}. Skipping processing."
+ )
+ documents_skipped += 1
+ continue
+
+ # Generate embedding for the summary
+ summary_embedding = config.embedding_model_instance.embed(
+ summary_content
+ )
+
+ # Process chunks - using the full event markdown
+ chunks = [
+ Chunk(
+ content=chunk.text,
+ embedding=config.embedding_model_instance.embed(chunk.text),
+ )
+ for chunk in config.chunker_instance.chunk(event_markdown)
+ ]
+
+ # Create and store new document
+ logger.info(f"Creating new document for event {event_summary}")
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Calendar Event - {event_summary}",
+ document_type=DocumentType.GOOGLE_CALENDAR_CONNECTOR,
+ document_metadata={
+ "event_id": event_id,
+ "event_summary": event_summary,
+ "calendar_id": calendar_id,
+ "start_time": start_time,
+ "end_time": end_time,
+ "location": location,
+ "indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
+ },
+ content=summary_content,
+ content_hash=content_hash,
+ embedding=summary_embedding,
+ chunks=chunks,
+ )
+
+ session.add(document)
+ documents_indexed += 1
+ logger.info(f"Successfully indexed new event {event_summary}")
+
+ except Exception as e:
+ logger.error(
+ f"Error processing event {event.get('summary', 'Unknown')}: {e!s}",
+ exc_info=True,
+ )
+ skipped_events.append(
+ f"{event.get('summary', 'Unknown')} (processing error)"
+ )
+ documents_skipped += 1
+ continue # Skip this event and continue with others
+
+ # Update the last_indexed_at timestamp for the connector only if requested
+ total_processed = documents_indexed
+ if update_last_indexed:
+ connector.last_indexed_at = datetime.now()
+ logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
+
+ # Commit all changes
+ await session.commit()
+ logger.info(
+ "Successfully committed all Google Calendar document changes to database"
+ )
+
+ # Log success
+ await task_logger.log_task_success(
+ log_entry,
+ f"Successfully completed Google Calendar indexing for connector {connector_id}",
+ {
+ "events_processed": total_processed,
+ "documents_indexed": documents_indexed,
+ "documents_skipped": documents_skipped,
+ "skipped_events_count": len(skipped_events),
+ },
+ )
+
+ logger.info(
+ f"Google Calendar indexing completed: {documents_indexed} new events, {documents_skipped} skipped"
+ )
+ return (
+ total_processed,
+ None,
+ ) # Return None as the error message to indicate success
+
+ except SQLAlchemyError as db_error:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Database error during Google Calendar indexing for connector {connector_id}",
+ str(db_error),
+ {"error_type": "SQLAlchemyError"},
+ )
+ logger.error(f"Database error: {db_error!s}", exc_info=True)
+ return 0, f"Database error: {db_error!s}"
+ except Exception as e:
+ await session.rollback()
+ await task_logger.log_task_failure(
+ log_entry,
+ f"Failed to index Google Calendar events for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Google Calendar events: {e!s}", exc_info=True)
+ return 0, f"Failed to index Google Calendar events: {e!s}"
+
+
+async def index_google_gmail_messages(
+ session: AsyncSession,
+ connector_id: int,
+ search_space_id: int,
+ user_id: str,
+ max_messages: int = 100,
+ days_back: int = 30,
+) -> tuple[int, str]:
+ """
+ Index Gmail messages for a specific connector.
+
+ Args:
+ session: Database session
+ connector_id: ID of the Gmail connector
+ search_space_id: ID of the search space
+ user_id: ID of the user
+ max_messages: Maximum number of messages to fetch (default: 100)
+ days_back: Number of days to look back (default: 30)
+
+ Returns:
+ Tuple of (number_of_indexed_messages, status_message)
+ """
+ task_logger = TaskLoggingService(session, search_space_id)
+
+ # Log task start
+ log_entry = await task_logger.log_task_start(
+ task_name="google_gmail_messages_indexing",
+ source="connector_indexing_task",
+ message=f"Starting Gmail messages indexing for connector {connector_id}",
+ metadata={
+ "connector_id": connector_id,
+ "user_id": str(user_id),
+ "max_messages": max_messages,
+ "days_back": days_back,
+ },
+ )
+
+ try:
+ # Get the connector from the database
+ result = await session.execute(
+ select(SearchSourceConnector).filter(
+ SearchSourceConnector.id == connector_id,
+ SearchSourceConnector.connector_type
+ == SearchSourceConnectorType.GOOGLE_GMAIL_CONNECTOR,
+ )
+ )
+ connector = result.scalars().first()
+
+ if not connector:
+ error_msg = f"Gmail connector with ID {connector_id} not found"
+ await task_logger.log_task_completion(
+ log_entry.id, "FAILED", error_msg, {"error_type": "ConnectorNotFound"}
+ )
+ return 0, error_msg
+
+ # Create credentials from connector config
+ config_data = connector.config
+ credentials = Credentials(
+ token=config_data.get("token"),
+ refresh_token=config_data.get("refresh_token"),
+ token_uri=config_data.get("token_uri"),
+ client_id=config_data.get("client_id"),
+ client_secret=config_data.get("client_secret"),
+ scopes=config_data.get("scopes", []),
+ )
+
+ # Initialize Gmail connector
+ gmail_connector = GoogleGmailConnector(credentials)
+
+ # Fetch recent messages
+ logger.info(f"Fetching recent Gmail messages for connector {connector_id}")
+ messages, error = gmail_connector.get_recent_messages(
+ max_results=max_messages, days_back=days_back
+ )
+
+ if error:
+ await task_logger.log_task_completion(
+ log_entry.id, "FAILED", f"Failed to fetch messages: {error}", {}
+ )
+ return 0, f"Failed to fetch Gmail messages: {error}"
+
+ if not messages:
+ success_msg = "No Gmail messages found in the specified date range"
+ await task_logger.log_task_completion(
+ log_entry.id, "SUCCESS", success_msg, {"messages_count": 0}
+ )
+ return 0, success_msg
+
+ logger.info(f"Found {len(messages)} Gmail messages to index")
+
+ indexed_count = 0
+ for message in messages:
+ try:
+ # Extract message information
+ message_id = message.get("id", "")
+ thread_id = message.get("threadId", "")
+
+ # Extract headers for subject and sender
+ payload = message.get("payload", {})
+ headers = payload.get("headers", [])
+
+ subject = "No Subject"
+ sender = "Unknown Sender"
+ date_str = "Unknown Date"
+
+ for header in headers:
+ name = header.get("name", "").lower()
+ value = header.get("value", "")
+ if name == "subject":
+ subject = value
+ elif name == "from":
+ sender = value
+ elif name == "date":
+ date_str = value
+
+ # Check if document already exists
+ existing_doc_result = await session.execute(
+ select(Document).filter(
+ Document.search_space_id == search_space_id,
+ Document.document_type == DocumentType.GOOGLE_GMAIL_CONNECTOR,
+ Document.document_metadata["message_id"].astext == message_id,
+ )
+ )
+ existing_doc = existing_doc_result.scalars().first()
+
+ if existing_doc:
+ logger.info(f"Gmail message {message_id} already indexed, skipping")
+ continue
+
+ # Format message to markdown
+ markdown_content = gmail_connector.format_message_to_markdown(message)
+
+ # Create and store new document
+ logger.info(f"Creating new document for Gmail message: {subject}")
+ document = Document(
+ search_space_id=search_space_id,
+ title=f"Gmail: {subject}",
+ document_type=DocumentType.GOOGLE_GMAIL_CONNECTOR,
+ document_metadata={
+ "message_id": message_id,
+ "thread_id": thread_id,
+ "subject": subject,
+ "sender": sender,
+ "date": date_str,
+ "connector_id": connector_id,
+ },
+ content=markdown_content,
+ )
+ session.add(document)
+ await session.flush()
+
+ # Create chunks for the document
+ chunks = config.chunker_instance.chunk(markdown_content)
+ for i, chunk_text in enumerate(chunks):
+ chunk = Chunk(
+ document_id=document.id,
+ content=chunk_text,
+ chunk_index=i,
+ embedding=config.embedding_model_instance.embed_query(
+ chunk_text
+ ),
+ )
+ session.add(chunk)
+
+ indexed_count += 1
+ logger.info(f"Successfully indexed Gmail message: {subject}")
+
+ except Exception as e:
+ logger.error(
+ f"Error indexing Gmail message {message_id}: {e!s}", exc_info=True
+ )
+ continue
+
+ # Commit all changes
+ await session.commit()
+
+ # Update connector's last_indexed_at timestamp
+ connector.last_indexed_at = datetime.now(UTC)
+ await session.commit()
+
+ success_msg = f"Successfully indexed {indexed_count} Gmail messages"
+ await task_logger.log_task_completion(
+ log_entry.id,
+ "SUCCESS",
+ success_msg,
+ {"indexed_count": indexed_count, "total_messages": len(messages)},
+ )
+ logger.info(success_msg)
+ return indexed_count, success_msg
+
+ except Exception as e:
+ await task_logger.log_task_completion(
+ log_entry.id,
+ "FAILED",
+ f"Failed to index Gmail messages for connector {connector_id}",
+ str(e),
+ {"error_type": type(e).__name__},
+ )
+ logger.error(f"Failed to index Gmail messages: {e!s}", exc_info=True)
+ return 0, f"Failed to index Gmail messages: {e!s}"