feat: Fixed Document Summary Content across connectors and processors

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-08-18 20:51:48 -07:00
parent c6921a4083
commit 1c4c61eb04
19 changed files with 474 additions and 233 deletions

View file

@ -513,7 +513,7 @@ async def process_file_in_background(
@router.get("/documents/", response_model=list[DocumentRead])
async def read_documents(
skip: int = 0,
limit: int = 300,
limit: int = 3000,
search_space_id: int | None = None,
session: AsyncSession = Depends(get_async_session),
user: User = Depends(current_active_user),

View file

@ -8,9 +8,7 @@ from datetime import datetime, timedelta
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
from app.config import config
from app.db import (
Chunk,
Document,
SearchSourceConnector,
SearchSourceConnectorType,
@ -39,25 +37,6 @@ async def check_duplicate_document_by_hash(
return existing_doc_result.scalars().first()
async def create_document_chunks(content: str) -> list[Chunk]:
"""
Create chunks from document content.
Args:
content: Document content to chunk
Returns:
List of Chunk objects with embeddings
"""
return [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(content)
]
async def get_connector_by_id(
session: AsyncSession, connector_id: int, connector_type: SearchSourceConnectorType
) -> SearchSourceConnector | None:

View file

@ -10,12 +10,16 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.clickup_connector import ClickUpConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -217,10 +221,34 @@ async def index_clickup_tasks(
documents_skipped += 1
continue
# Embedding and chunks
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
if user_llm:
document_metadata = {
"task_id": task_id,
"task_name": task_name,
"task_status": task_status,
"task_priority": task_priority,
"task_list": task_list_name,
"task_space": task_space_name,
"assignees": len(task_assignees),
"document_type": "ClickUp Task",
"connector_type": "ClickUp",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
task_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = task_content
summary_embedding = config.embedding_model_instance.embed(
task_content
)
chunks = await create_document_chunks(task_content)
document = Document(
@ -238,7 +266,7 @@ async def index_clickup_tasks(
"task_updated": task_updated,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
},
content=task_content,
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks,

View file

@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.confluence_connector import ConfluenceConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
calculate_date_range,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -213,21 +217,6 @@ async def index_confluence_pages(
documents_skipped += 1
continue
# Create a simple summary
summary_content = (
f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
)
if page_content:
# Take first 500 characters of content for summary
content_preview = page_content[:500]
if len(page_content) > 500:
content_preview += "..."
summary_content += f"Content Preview: {content_preview}\n\n"
# Add comment count
comment_count = len(comments)
summary_content += f"Comments: {comment_count}"
# Generate content hash
content_hash = generate_content_hash(full_content, search_space_id)
@ -243,7 +232,37 @@ async def index_confluence_pages(
documents_skipped += 1
continue
# Generate embedding for the summary
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
comment_count = len(comments)
if user_llm:
document_metadata = {
"page_title": page_title,
"page_id": page_id,
"space_id": space_id,
"comment_count": comment_count,
"document_type": "Confluence Page",
"connector_type": "Confluence",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
full_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = (
f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
)
if page_content:
# Take first 500 characters of content for summary
content_preview = page_content[:500]
if len(page_content) > 500:
content_preview += "..."
summary_content += f"Content Preview: {content_preview}\n\n"
summary_content += f"Comments: {comment_count}"
summary_embedding = config.embedding_model_instance.embed(
summary_content
)

View file

@ -8,18 +8,19 @@ from datetime import UTC, datetime, timedelta
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.discord_connector import DiscordConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
build_document_metadata_string,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -335,14 +336,19 @@ async def index_discord_messages(
documents_skipped += 1
continue
# Generate summary using summary_chain
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
summary_result = await summary_chain.ainvoke(
{"document": combined_document_string}
)
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(
summary_content
# Generate summary with metadata
document_metadata = {
"guild_name": guild_name,
"channel_name": channel_name,
"message_count": len(formatted_messages),
"document_type": "Discord Channel Messages",
"connector_type": "Discord",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
combined_document_string, user_llm, document_metadata
)
# Chunks from channel content

View file

@ -10,12 +10,16 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.github_connector import GitHubConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
)
@ -208,9 +212,31 @@ async def index_github_repos(
)
continue
# Use file_content directly for chunking, maybe summary for main content?
# For now, let's use the full content for both, might need refinement
summary_content = f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..." # Simple summary
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
if user_llm:
# Extract file extension from file path
file_extension = (
file_path.split(".")[-1] if "." in file_path else None
)
document_metadata = {
"file_path": full_path_key,
"repository": repo_full_name,
"file_type": file_extension or "unknown",
"document_type": "GitHub Repository File",
"connector_type": "GitHub",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
file_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = (
f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..."
)
summary_embedding = config.embedding_model_instance.embed(
summary_content
)

View file

@ -11,11 +11,15 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.google_calendar_connector import GoogleCalendarConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -237,18 +241,6 @@ async def index_google_calendar_events(
location = event.get("location", "")
description = event.get("description", "")
summary_content = f"Google Calendar Event: {event_summary}\n\n"
summary_content += f"Calendar: {calendar_id}\n"
summary_content += f"Start: {start_time}\n"
summary_content += f"End: {end_time}\n"
if location:
summary_content += f"Location: {location}\n"
if description:
desc_preview = description[:300]
if len(description) > 300:
desc_preview += "..."
summary_content += f"Description: {desc_preview}\n"
content_hash = generate_content_hash(event_markdown, search_space_id)
# Duplicate check via simple query using helper in base
@ -266,7 +258,39 @@ async def index_google_calendar_events(
documents_skipped += 1
continue
# Embeddings and chunks
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
if user_llm:
document_metadata = {
"event_id": event_id,
"event_summary": event_summary,
"calendar_id": calendar_id,
"start_time": start_time,
"end_time": end_time,
"location": location or "No location",
"document_type": "Google Calendar Event",
"connector_type": "Google Calendar",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
event_markdown, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = f"Google Calendar Event: {event_summary}\n\n"
summary_content += f"Calendar: {calendar_id}\n"
summary_content += f"Start: {start_time}\n"
summary_content += f"End: {end_time}\n"
if location:
summary_content += f"Location: {location}\n"
if description:
desc_preview = description[:300]
if len(description) > 300:
desc_preview += "..."
summary_content += f"Description: {desc_preview}\n"
summary_embedding = config.embedding_model_instance.embed(
summary_content
)

View file

@ -15,12 +15,16 @@ from app.db import (
DocumentType,
SearchSourceConnectorType,
)
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -186,11 +190,6 @@ async def index_google_gmail_messages(
documents_skipped += 1
continue
# Create a simple summary
summary_content = f"Google Gmail Message: {subject}\n\n"
summary_content += f"Sender: {sender}\n"
summary_content += f"Date: {date_str}\n"
# Generate content hash
content_hash = generate_content_hash(markdown_content, search_space_id)
@ -206,7 +205,30 @@ async def index_google_gmail_messages(
documents_skipped += 1
continue
# Generate embedding for the summary
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
if user_llm:
document_metadata = {
"message_id": message_id,
"thread_id": thread_id,
"subject": subject,
"sender": sender,
"date": date_str,
"document_type": "Gmail Message",
"connector_type": "Google Gmail",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
markdown_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = f"Google Gmail Message: {subject}\n\n"
summary_content += f"Sender: {sender}\n"
summary_content += f"Date: {date_str}\n"
summary_embedding = config.embedding_model_instance.embed(
summary_content
)
@ -228,7 +250,7 @@ async def index_google_gmail_messages(
"date": date_str,
"connector_id": connector_id,
},
content=markdown_content,
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks,

View file

@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.jira_connector import JiraConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
calculate_date_range,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -196,17 +200,6 @@ async def index_jira_issues(
documents_skipped += 1
continue
# Create a simple summary
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
if formatted_issue.get("description"):
summary_content += (
f"Description: {formatted_issue.get('description')}\n\n"
)
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
# Generate content hash
content_hash = generate_content_hash(issue_content, search_space_id)
@ -222,7 +215,34 @@ async def index_jira_issues(
documents_skipped += 1
continue
# Generate embedding for the summary
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
comment_count = len(formatted_issue.get("comments", []))
if user_llm:
document_metadata = {
"issue_key": issue_identifier,
"issue_title": issue_title,
"status": formatted_issue.get("status", "Unknown"),
"priority": formatted_issue.get("priority", "Unknown"),
"comment_count": comment_count,
"document_type": "Jira Issue",
"connector_type": "Jira",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
issue_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
if formatted_issue.get("description"):
summary_content += (
f"Description: {formatted_issue.get('description')}\n\n"
)
summary_content += f"Comments: {comment_count}"
summary_embedding = config.embedding_model_instance.embed(
summary_content
)

View file

@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.linear_connector import LinearConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
calculate_date_range,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -209,22 +213,6 @@ async def index_linear_issues(
documents_skipped += 1
continue
# Create a short summary for the embedding
state = formatted_issue.get("state", "Unknown")
description = formatted_issue.get("description", "")
# Truncate description if it's too long for the summary
if description and len(description) > 500:
description = description[:497] + "..."
# Create a simple summary from the issue data
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
if description:
summary_content += f"Description: {description}\n\n"
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
content_hash = generate_content_hash(issue_content, search_space_id)
# Check if document with this content hash already exists
@ -239,7 +227,37 @@ async def index_linear_issues(
documents_skipped += 1
continue
# Generate embedding for the summary
# Generate summary with metadata
user_llm = await get_user_long_context_llm(session, user_id)
state = formatted_issue.get("state", "Unknown")
description = formatted_issue.get("description", "")
comment_count = len(formatted_issue.get("comments", []))
if user_llm:
document_metadata = {
"issue_id": issue_identifier,
"issue_title": issue_title,
"state": state,
"priority": formatted_issue.get("priority", "Unknown"),
"comment_count": comment_count,
"document_type": "Linear Issue",
"connector_type": "Linear",
}
(
summary_content,
summary_embedding,
) = await generate_document_summary(
issue_content, user_llm, document_metadata
)
else:
# Fallback to simple summary if no LLM configured
# Truncate description if it's too long for the summary
if description and len(description) > 500:
description = description[:497] + "..."
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
if description:
summary_content += f"Description: {description}\n\n"
summary_content += f"Comments: {comment_count}"
summary_embedding = config.embedding_model_instance.embed(
summary_content
)

View file

@ -7,18 +7,19 @@ from datetime import datetime, timedelta
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.notion_history import NotionHistoryConnector
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
build_document_metadata_string,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -302,15 +303,16 @@ async def index_notion_pages(
documents_skipped += 1
continue
# Generate summary
# Generate summary with metadata
logger.debug(f"Generating summary for page {page_title}")
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
summary_result = await summary_chain.ainvoke(
{"document": combined_document_string}
)
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(
summary_content
document_metadata = {
"page_title": page_title,
"page_id": page_id,
"document_type": "Notion Page",
"connector_type": "Notion",
}
summary_content, summary_embedding = await generate_document_summary(
markdown_content, user_llm, document_metadata
)
# Process chunks

View file

@ -8,19 +8,20 @@ from slack_sdk.errors import SlackApiError
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.ext.asyncio import AsyncSession
from app.config import config
from app.connectors.slack_history import SlackHistory
from app.db import Document, DocumentType, SearchSourceConnectorType
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
build_document_metadata_string,
calculate_date_range,
check_duplicate_document_by_hash,
create_document_chunks,
get_connector_by_id,
logger,
update_connector_last_indexed,
@ -289,14 +290,16 @@ async def index_slack_messages(
documents_skipped += 1
continue
# Generate summary
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
summary_result = await summary_chain.ainvoke(
{"document": combined_document_string}
)
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(
summary_content
# Generate summary with metadata
document_metadata = {
"channel_name": channel_name,
"channel_id": channel_id,
"message_count": len(formatted_messages),
"document_type": "Slack Channel Messages",
"connector_type": "Slack",
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -6,9 +6,7 @@ from langchain_community.document_transformers import MarkdownifyTransformer
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
from app.config import config
from app.db import Chunk, Document
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.db import Document
# Initialize markdown transformer
md = MarkdownifyTransformer()
@ -31,44 +29,3 @@ async def check_duplicate_document(
select(Document).where(Document.content_hash == content_hash)
)
return existing_doc_result.scalars().first()
async def create_document_chunks(content: str) -> list[Chunk]:
"""
Create chunks from document content.
Args:
content: Document content to chunk
Returns:
List of Chunk objects with embeddings
"""
return [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(content)
]
async def generate_document_summary(
content: str, user_llm, document_title: str = ""
) -> tuple[str, list[float]]:
"""
Generate summary and embedding for document content.
Args:
content: Document content
user_llm: User's LLM instance
document_title: Optional document title for context
Returns:
Tuple of (summary_content, summary_embedding)
"""
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
summary_result = await summary_chain.ainvoke({"document": content})
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(summary_content)
return summary_content, summary_embedding

View file

@ -11,12 +11,14 @@ from app.db import Document, DocumentType
from app.schemas import ExtensionDocumentContent
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -106,9 +108,18 @@ async def add_extension_received_document(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"session_id": content.metadata.BrowsingSessionId,
"url": content.metadata.VisitedWebPageURL,
"title": content.metadata.VisitedWebPageTitle,
"referrer": content.metadata.VisitedWebPageReffererURL,
"timestamp": content.metadata.VisitedWebPageDateWithTimeInISOString,
"duration_ms": content.metadata.VisitedWebPageVisitDurationInMilliseconds,
"document_type": "Browser Extension Capture",
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -12,13 +12,13 @@ from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.utils.document_converters import (
convert_document_to_markdown,
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -64,9 +64,14 @@ async def add_received_file_document_using_unstructured(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "UNSTRUCTURED",
"document_type": "File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks
@ -139,9 +144,14 @@ async def add_received_file_document_using_llamacloud(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "LLAMACLOUD",
"document_type": "File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks
@ -224,9 +234,30 @@ async def add_received_file_document_using_docling(
content=file_in_markdown, llm=user_llm, document_title=file_name
)
# Enhance summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "DOCLING",
"document_type": "File Document",
}
metadata_parts = []
metadata_parts.append("# DOCUMENT METADATA")
for key, value in document_metadata.items():
if value: # Only include non-empty values
formatted_key = key.replace("_", " ").title()
metadata_parts.append(f"**{formatted_key}:** {value}")
metadata_section = "\n".join(metadata_parts)
enhanced_summary_content = (
f"{metadata_section}\n\n# DOCUMENT SUMMARY\n\n{summary_content}"
)
from app.config import config
summary_embedding = config.embedding_model_instance.embed(summary_content)
summary_embedding = config.embedding_model_instance.embed(
enhanced_summary_content
)
# Process chunks
chunks = await create_document_chunks(file_in_markdown)
@ -240,7 +271,7 @@ async def add_received_file_document_using_docling(
"FILE_NAME": file_name,
"ETL_SERVICE": "DOCLING",
},
content=summary_content,
content=enhanced_summary_content,
embedding=summary_embedding,
chunks=chunks,
content_hash=content_hash,

View file

@ -10,12 +10,14 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -77,9 +79,13 @@ async def add_received_markdown_file_document(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"document_type": "Markdown File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks

View file

@ -13,12 +13,14 @@ from app.config import config
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
md,
)
@ -170,8 +172,15 @@ async def add_crawled_url_document(
{"stage": "summary_generation"},
)
# Generate summary with metadata
document_metadata = {
"url": url,
"title": url_crawled[0].metadata.get("title", url),
"document_type": "Crawled URL Document",
"crawler_type": type(crawl_loader).__name__,
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -13,12 +13,14 @@ from youtube_transcript_api import YouTubeTranscriptApi
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -242,8 +244,18 @@ async def add_youtube_video_document(
{"stage": "summary_generation"},
)
# Generate summary with metadata
document_metadata = {
"url": url,
"video_id": video_id,
"title": video_data.get("title", "YouTube Video"),
"author": video_data.get("author_name", "Unknown"),
"thumbnail": video_data.get("thumbnail_url", ""),
"document_type": "YouTube Video Document",
"has_transcript": "No captions available" not in transcript_text,
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -1,5 +1,73 @@
import hashlib
from app.config import config
from app.db import Chunk
from app.prompts import SUMMARY_PROMPT_TEMPLATE
async def generate_document_summary(
content: str,
user_llm,
document_metadata: dict | None = None,
document_title: str = "",
) -> tuple[str, list[float]]:
"""
Generate summary and embedding for document content with metadata.
Args:
content: Document content
user_llm: User's LLM instance
document_metadata: Optional metadata dictionary to include in summary
document_title: Optional document title for context (deprecated, use metadata)
Returns:
Tuple of (enhanced_summary_content, summary_embedding)
"""
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
content_with_metadata = f"<DOCUMENT><DOCUMENT_METADATA>\n\n{document_metadata}\n\n</DOCUMENT_METADATA>\n\n<DOCUMENT_CONTENT>\n\n{content}\n\n</DOCUMENT_CONTENT></DOCUMENT>"
summary_result = await summary_chain.ainvoke({"document": content_with_metadata})
summary_content = summary_result.content
# Combine summary with metadata if provided
if document_metadata:
metadata_parts = []
metadata_parts.append("# DOCUMENT METADATA")
for key, value in document_metadata.items():
if value: # Only include non-empty values
formatted_key = key.replace("_", " ").title()
metadata_parts.append(f"**{formatted_key}:** {value}")
metadata_section = "\n".join(metadata_parts)
enhanced_summary_content = (
f"{metadata_section}\n\n# DOCUMENT SUMMARY\n\n{summary_content}"
)
else:
enhanced_summary_content = summary_content
summary_embedding = config.embedding_model_instance.embed(enhanced_summary_content)
return enhanced_summary_content, summary_embedding
async def create_document_chunks(content: str) -> list[Chunk]:
"""
Create chunks from document content.
Args:
content: Document content to chunk
Returns:
List of Chunk objects with embeddings
"""
return [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(content)
]
async def convert_element_to_markdown(element) -> str:
"""