feat: Fixed Document Summary Content across connectors and processors

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-08-18 20:51:48 -07:00
parent c6921a4083
commit 1c4c61eb04
19 changed files with 474 additions and 233 deletions

View file

@ -6,9 +6,7 @@ from langchain_community.document_transformers import MarkdownifyTransformer
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
from app.config import config
from app.db import Chunk, Document
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.db import Document
# Initialize markdown transformer
md = MarkdownifyTransformer()
@ -31,44 +29,3 @@ async def check_duplicate_document(
select(Document).where(Document.content_hash == content_hash)
)
return existing_doc_result.scalars().first()
async def create_document_chunks(content: str) -> list[Chunk]:
"""
Create chunks from document content.
Args:
content: Document content to chunk
Returns:
List of Chunk objects with embeddings
"""
return [
Chunk(
content=chunk.text,
embedding=config.embedding_model_instance.embed(chunk.text),
)
for chunk in config.chunker_instance.chunk(content)
]
async def generate_document_summary(
content: str, user_llm, document_title: str = ""
) -> tuple[str, list[float]]:
"""
Generate summary and embedding for document content.
Args:
content: Document content
user_llm: User's LLM instance
document_title: Optional document title for context
Returns:
Tuple of (summary_content, summary_embedding)
"""
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
summary_result = await summary_chain.ainvoke({"document": content})
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(summary_content)
return summary_content, summary_embedding

View file

@ -11,12 +11,14 @@ from app.db import Document, DocumentType
from app.schemas import ExtensionDocumentContent
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -106,9 +108,18 @@ async def add_extension_received_document(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"session_id": content.metadata.BrowsingSessionId,
"url": content.metadata.VisitedWebPageURL,
"title": content.metadata.VisitedWebPageTitle,
"referrer": content.metadata.VisitedWebPageReffererURL,
"timestamp": content.metadata.VisitedWebPageDateWithTimeInISOString,
"duration_ms": content.metadata.VisitedWebPageVisitDurationInMilliseconds,
"document_type": "Browser Extension Capture",
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -12,13 +12,13 @@ from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.utils.document_converters import (
convert_document_to_markdown,
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -64,9 +64,14 @@ async def add_received_file_document_using_unstructured(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "UNSTRUCTURED",
"document_type": "File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks
@ -139,9 +144,14 @@ async def add_received_file_document_using_llamacloud(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "LLAMACLOUD",
"document_type": "File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks
@ -224,9 +234,30 @@ async def add_received_file_document_using_docling(
content=file_in_markdown, llm=user_llm, document_title=file_name
)
# Enhance summary with metadata
document_metadata = {
"file_name": file_name,
"etl_service": "DOCLING",
"document_type": "File Document",
}
metadata_parts = []
metadata_parts.append("# DOCUMENT METADATA")
for key, value in document_metadata.items():
if value: # Only include non-empty values
formatted_key = key.replace("_", " ").title()
metadata_parts.append(f"**{formatted_key}:** {value}")
metadata_section = "\n".join(metadata_parts)
enhanced_summary_content = (
f"{metadata_section}\n\n# DOCUMENT SUMMARY\n\n{summary_content}"
)
from app.config import config
summary_embedding = config.embedding_model_instance.embed(summary_content)
summary_embedding = config.embedding_model_instance.embed(
enhanced_summary_content
)
# Process chunks
chunks = await create_document_chunks(file_in_markdown)
@ -240,7 +271,7 @@ async def add_received_file_document_using_docling(
"FILE_NAME": file_name,
"ETL_SERVICE": "DOCLING",
},
content=summary_content,
content=enhanced_summary_content,
embedding=summary_embedding,
chunks=chunks,
content_hash=content_hash,

View file

@ -10,12 +10,14 @@ from sqlalchemy.ext.asyncio import AsyncSession
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -77,9 +79,13 @@ async def add_received_markdown_file_document(
if not user_llm:
raise RuntimeError(f"No long context LLM configured for user {user_id}")
# Generate summary
# Generate summary with metadata
document_metadata = {
"file_name": file_name,
"document_type": "Markdown File Document",
}
summary_content, summary_embedding = await generate_document_summary(
file_in_markdown, user_llm
file_in_markdown, user_llm, document_metadata
)
# Process chunks

View file

@ -13,12 +13,14 @@ from app.config import config
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
md,
)
@ -170,8 +172,15 @@ async def add_crawled_url_document(
{"stage": "summary_generation"},
)
# Generate summary with metadata
document_metadata = {
"url": url,
"title": url_crawled[0].metadata.get("title", url),
"document_type": "Crawled URL Document",
"crawler_type": type(crawl_loader).__name__,
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks

View file

@ -13,12 +13,14 @@ from youtube_transcript_api import YouTubeTranscriptApi
from app.db import Document, DocumentType
from app.services.llm_service import get_user_long_context_llm
from app.services.task_logging_service import TaskLoggingService
from app.utils.document_converters import generate_content_hash
from app.utils.document_converters import (
create_document_chunks,
generate_content_hash,
generate_document_summary,
)
from .base import (
check_duplicate_document,
create_document_chunks,
generate_document_summary,
)
@ -242,8 +244,18 @@ async def add_youtube_video_document(
{"stage": "summary_generation"},
)
# Generate summary with metadata
document_metadata = {
"url": url,
"video_id": video_id,
"title": video_data.get("title", "YouTube Video"),
"author": video_data.get("author_name", "Unknown"),
"thumbnail": video_data.get("thumbnail_url", ""),
"document_type": "YouTube Video Document",
"has_transcript": "No captions available" not in transcript_text,
}
summary_content, summary_embedding = await generate_document_summary(
combined_document_string, user_llm
combined_document_string, user_llm, document_metadata
)
# Process chunks