mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-02 10:39:13 +00:00
Merge pull request #174 from MODSetter/dev
fix(backend): Fix rerank_documents node in sub_section_writer & qna_agent
This commit is contained in:
commit
15a019ef76
12 changed files with 2719 additions and 2120 deletions
|
@ -68,27 +68,3 @@ def build_graph():
|
|||
|
||||
# Compile the graph once when the module is loaded
|
||||
graph = build_graph()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
|
|
|
@ -2,11 +2,10 @@ import asyncio
|
|||
import json
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from app.db import async_session_maker
|
||||
from app.utils.connector_service import ConnectorService
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from .configuration import Configuration, SearchMode
|
||||
|
@ -15,6 +14,7 @@ from .state import State
|
|||
from .sub_section_writer.graph import graph as sub_section_writer_graph
|
||||
from .sub_section_writer.configuration import SubSectionType
|
||||
from .qna_agent.graph import graph as qna_agent_graph
|
||||
from .utils import AnswerOutline, get_connector_emoji, get_connector_friendly_name
|
||||
|
||||
from app.utils.query_service import QueryService
|
||||
|
||||
|
@ -24,7 +24,6 @@ from langgraph.types import StreamWriter
|
|||
from sqlalchemy.future import select
|
||||
from app.db import Document, SearchSpace
|
||||
|
||||
|
||||
async def fetch_documents_by_ids(
|
||||
document_ids: List[int],
|
||||
user_id: str,
|
||||
|
@ -41,7 +40,7 @@ async def fetch_documents_by_ids(
|
|||
Args:
|
||||
document_ids: List of document IDs to fetch
|
||||
user_id: The user ID to check ownership
|
||||
db_session: The database session eg L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
db_session: The database session
|
||||
|
||||
Returns:
|
||||
Tuple of (source_objects, document_chunks) - similar to ConnectorService pattern
|
||||
|
@ -168,7 +167,7 @@ async def fetch_documents_by_ids(
|
|||
url = f"https://www.youtube.com/watch?v={video_id}" if video_id else ""
|
||||
|
||||
elif doc_type == "DISCORD_CONNECTOR":
|
||||
# Extract Discord-specific metadata L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
# Extract Discord-specific metadata
|
||||
channel_name = metadata.get('channel_name', 'Unknown Channel')
|
||||
channel_id = metadata.get('channel_id', '')
|
||||
guild_id = metadata.get('guild_id', '')
|
||||
|
@ -252,16 +251,6 @@ async def fetch_documents_by_ids(
|
|||
return [], []
|
||||
|
||||
|
||||
class Section(BaseModel):
|
||||
"""A section in the answer outline."""
|
||||
section_id: int = Field(..., description="The zero-based index of the section")
|
||||
section_title: str = Field(..., description="The title of the section")
|
||||
questions: List[str] = Field(..., description="Questions to research for this section")
|
||||
|
||||
class AnswerOutline(BaseModel):
|
||||
"""The complete answer outline with all sections."""
|
||||
answer_outline: List[Section] = Field(..., description="List of sections in the answer outline")
|
||||
|
||||
async def write_answer_outline(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
|
||||
"""
|
||||
Create a structured answer outline based on the user query.
|
||||
|
@ -379,6 +368,7 @@ async def write_answer_outline(state: State, config: RunnableConfig, writer: Str
|
|||
print(f"Raw response: {response.content}")
|
||||
raise
|
||||
|
||||
|
||||
async def fetch_relevant_documents(
|
||||
research_questions: List[str],
|
||||
user_id: str,
|
||||
|
@ -535,7 +525,7 @@ async def fetch_relevant_documents(
|
|||
search_mode=search_mode
|
||||
)
|
||||
|
||||
# Add to sources and raw documents L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
# Add to sources and raw documents
|
||||
if source_object:
|
||||
all_sources.append(source_object)
|
||||
all_raw_documents.extend(slack_chunks)
|
||||
|
@ -746,37 +736,6 @@ async def fetch_relevant_documents(
|
|||
# Return deduplicated documents
|
||||
return deduplicated_docs
|
||||
|
||||
def get_connector_emoji(connector_name: str) -> str:
|
||||
"""Get an appropriate emoji for a connector type."""
|
||||
connector_emojis = {
|
||||
"YOUTUBE_VIDEO": "📹",
|
||||
"EXTENSION": "🧩",
|
||||
"CRAWLED_URL": "🌐",
|
||||
"FILE": "📄",
|
||||
"SLACK_CONNECTOR": "💬",
|
||||
"NOTION_CONNECTOR": "📘",
|
||||
"GITHUB_CONNECTOR": "🐙",
|
||||
"LINEAR_CONNECTOR": "📊",
|
||||
"TAVILY_API": "🔍",
|
||||
"LINKUP_API": "🔗"
|
||||
}
|
||||
return connector_emojis.get(connector_name, "🔎")
|
||||
|
||||
def get_connector_friendly_name(connector_name: str) -> str:
|
||||
"""Convert technical connector IDs to user-friendly names."""
|
||||
connector_friendly_names = {
|
||||
"YOUTUBE_VIDEO": "YouTube",
|
||||
"EXTENSION": "Browser Extension",
|
||||
"CRAWLED_URL": "Web Pages",
|
||||
"FILE": "Files",
|
||||
"SLACK_CONNECTOR": "Slack",
|
||||
"NOTION_CONNECTOR": "Notion",
|
||||
"GITHUB_CONNECTOR": "GitHub",
|
||||
"LINEAR_CONNECTOR": "Linear",
|
||||
"TAVILY_API": "Tavily Search",
|
||||
"LINKUP_API": "Linkup Search"
|
||||
}
|
||||
return connector_friendly_names.get(connector_name, connector_name)
|
||||
|
||||
async def process_sections(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
|
||||
"""
|
||||
|
@ -787,7 +746,7 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
|
|||
using the sub_section_writer graph with the shared document pool.
|
||||
|
||||
Returns:
|
||||
Dict containing the final written report in the "final_written_report" key L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==s.
|
||||
Dict containing the final written report in the "final_written_report" key.
|
||||
"""
|
||||
# Get configuration and answer outline from state
|
||||
configuration = Configuration.from_runnable_config(config)
|
||||
|
@ -969,6 +928,7 @@ async def process_sections(state: State, config: RunnableConfig, writer: StreamW
|
|||
"final_written_report": final_written_report
|
||||
}
|
||||
|
||||
|
||||
async def process_section_with_documents(
|
||||
section_id: int,
|
||||
section_title: str,
|
||||
|
@ -986,7 +946,7 @@ async def process_section_with_documents(
|
|||
Process a single section using pre-fetched documents.
|
||||
|
||||
Args:
|
||||
section_id: The ID of the section
|
||||
section_id: The ID of the section
|
||||
section_title: The title of the section
|
||||
section_questions: List of research questions for this section
|
||||
user_id: The user ID
|
||||
|
@ -1080,7 +1040,7 @@ async def process_section_with_documents(
|
|||
complete_answer.extend(content_lines)
|
||||
complete_answer.append("") # Empty line after content
|
||||
|
||||
# Update answer in UI in real-time L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
# Update answer in UI in real-time
|
||||
state.streaming_service.only_update_answer(complete_answer)
|
||||
writer({"yeild_value": state.streaming_service._format_annotations()})
|
||||
|
||||
|
@ -1106,7 +1066,6 @@ async def process_section_with_documents(
|
|||
return f"Error processing section: {section_title}. Details: {str(e)}"
|
||||
|
||||
|
||||
|
||||
async def reformulate_user_query(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
|
||||
"""
|
||||
Reforms the user query based on the chat history.
|
||||
|
@ -1124,6 +1083,7 @@ async def reformulate_user_query(state: State, config: RunnableConfig, writer: S
|
|||
"reformulated_query": reformulated_query
|
||||
}
|
||||
|
||||
|
||||
async def handle_qna_workflow(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
|
||||
"""
|
||||
Handle the QNA research workflow.
|
||||
|
@ -1201,7 +1161,7 @@ async def handle_qna_workflow(state: State, config: RunnableConfig, writer: Stre
|
|||
# Continue with empty documents - the QNA agent will handle this gracefully
|
||||
relevant_documents = []
|
||||
|
||||
# Combine user-selected documents with connector-fetched documents L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
# Combine user-selected documents with connector-fetched documents
|
||||
all_documents = user_selected_documents + relevant_documents
|
||||
|
||||
print(f"Fetched {len(relevant_documents)} relevant documents for QNA")
|
||||
|
|
|
@ -1,6 +1,3 @@
|
|||
"""
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
||||
import datetime
|
||||
|
||||
|
||||
|
|
|
@ -18,105 +18,3 @@ workflow.add_edge("answer_question", "__end__")
|
|||
# Compile the workflow into an executable graph
|
||||
graph = workflow.compile()
|
||||
graph.name = "SurfSense QnA Agent" # This defines the custom name in LangSmith
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
|
@ -1,8 +1,8 @@
|
|||
from app.utils.reranker_service import RerankerService
|
||||
from .configuration import Configuration
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from .state import State
|
||||
from typing import Any, Dict
|
||||
from app.config import config as app_config
|
||||
from .prompts import get_qna_citation_system_prompt, get_qna_no_documents_system_prompt
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from ..utils import (
|
||||
|
@ -35,7 +35,7 @@ async def rerank_documents(state: State, config: RunnableConfig) -> Dict[str, An
|
|||
}
|
||||
|
||||
# Get reranker service from app config
|
||||
reranker_service = getattr(app_config, "reranker_service", None)
|
||||
reranker_service = RerankerService.get_reranker_instance()
|
||||
|
||||
# Use documents as is if no reranker service is available
|
||||
reranked_docs = documents
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
"""Define the state structures for the agent.
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
||||
"""Define the state structures for the agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
"""Define the state structures for the agent.
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
||||
"""Define the state structures for the agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ from .configuration import Configuration
|
|||
from langchain_core.runnables import RunnableConfig
|
||||
from .state import State
|
||||
from typing import Any, Dict
|
||||
from app.config import config as app_config
|
||||
from app.utils.reranker_service import RerankerService
|
||||
from .prompts import get_citation_system_prompt, get_no_documents_system_prompt
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from .configuration import SubSectionType
|
||||
|
@ -35,7 +35,7 @@ async def rerank_documents(state: State, config: RunnableConfig) -> Dict[str, An
|
|||
}
|
||||
|
||||
# Get reranker service from app config
|
||||
reranker_service = getattr(app_config, "reranker_service", None)
|
||||
reranker_service = RerankerService.get_reranker_instance()
|
||||
|
||||
# Use documents as is if no reranker service is available
|
||||
reranked_docs = documents
|
||||
|
@ -211,7 +211,7 @@ async def write_sub_section(state: State, config: RunnableConfig) -> Dict[str, A
|
|||
HumanMessage(content=human_message_content)
|
||||
]
|
||||
|
||||
# Log final token count L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
# Log final token count
|
||||
total_tokens = calculate_token_count(messages_with_chat_history, llm.model)
|
||||
print(f"Final token count: {total_tokens}")
|
||||
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
"""Define the state structures for the agent.
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
||||
"""Define the state structures for the agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
|
|
@ -1,7 +1,18 @@
|
|||
from typing import List, Dict, Any, Tuple, NamedTuple
|
||||
from langchain_core.messages import BaseMessage
|
||||
from pydantic import BaseModel, Field
|
||||
from litellm import token_counter, get_model_info
|
||||
|
||||
class Section(BaseModel):
|
||||
"""A section in the answer outline."""
|
||||
section_id: int = Field(..., description="The zero-based index of the section")
|
||||
section_title: str = Field(..., description="The title of the section")
|
||||
questions: List[str] = Field(..., description="Questions to research for this section")
|
||||
|
||||
class AnswerOutline(BaseModel):
|
||||
"""The complete answer outline with all sections."""
|
||||
answer_outline: List[Section] = Field(..., description="List of sections in the answer outline")
|
||||
|
||||
|
||||
class DocumentTokenInfo(NamedTuple):
|
||||
"""Information about a document and its token cost."""
|
||||
|
@ -9,6 +20,40 @@ class DocumentTokenInfo(NamedTuple):
|
|||
document: Dict[str, Any]
|
||||
formatted_content: str
|
||||
token_count: int
|
||||
|
||||
|
||||
def get_connector_emoji(connector_name: str) -> str:
|
||||
"""Get an appropriate emoji for a connector type."""
|
||||
connector_emojis = {
|
||||
"YOUTUBE_VIDEO": "📹",
|
||||
"EXTENSION": "🧩",
|
||||
"CRAWLED_URL": "🌐",
|
||||
"FILE": "📄",
|
||||
"SLACK_CONNECTOR": "💬",
|
||||
"NOTION_CONNECTOR": "📘",
|
||||
"GITHUB_CONNECTOR": "🐙",
|
||||
"LINEAR_CONNECTOR": "📊",
|
||||
"TAVILY_API": "🔍",
|
||||
"LINKUP_API": "🔗"
|
||||
}
|
||||
return connector_emojis.get(connector_name, "🔎")
|
||||
|
||||
|
||||
def get_connector_friendly_name(connector_name: str) -> str:
|
||||
"""Convert technical connector IDs to user-friendly names."""
|
||||
connector_friendly_names = {
|
||||
"YOUTUBE_VIDEO": "YouTube",
|
||||
"EXTENSION": "Browser Extension",
|
||||
"CRAWLED_URL": "Web Pages",
|
||||
"FILE": "Files",
|
||||
"SLACK_CONNECTOR": "Slack",
|
||||
"NOTION_CONNECTOR": "Notion",
|
||||
"GITHUB_CONNECTOR": "GitHub",
|
||||
"LINEAR_CONNECTOR": "Linear",
|
||||
"TAVILY_API": "Tavily Search",
|
||||
"LINKUP_API": "Linkup Search"
|
||||
}
|
||||
return connector_friendly_names.get(connector_name, connector_name)
|
||||
|
||||
|
||||
def convert_langchain_messages_to_dict(messages: List[BaseMessage]) -> List[Dict[str, str]]:
|
||||
|
@ -82,9 +127,6 @@ def calculate_document_token_costs(documents: List[Dict[str, Any]], model: str)
|
|||
))
|
||||
|
||||
return document_token_info
|
||||
"""
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
||||
|
||||
|
||||
def find_optimal_documents_with_binary_search(
|
||||
|
@ -185,51 +227,3 @@ def calculate_token_count(messages: List[BaseMessage], model_name: str) -> int:
|
|||
model = model_name
|
||||
messages_dict = convert_langchain_messages_to_dict(messages)
|
||||
return token_counter(messages=messages_dict, model=model)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
File Hash: L0o55JzTBlCYJNCRYbbxt8mxqRs5kPm6QO8NzVqEZtzqWtG0EklbHuQ3I5ZBdSy8n+EqrdQxcp+R3Yc57NIm79iNS2sxt4tVMSTLeAT6qpMS2SbBER4hRiLaH5BKpXBJoCRPoFMYpDf6pdIokZyJz/EQWQZj531TfLcBfFkxJuWEqvinKhvWJPjApBd1RldixOj57mNXybHN8WFe+FnayhYQhptesoFAVXAk1WuV2URSqXxs5/00Eo8osC55gsye6LXTYzieyUKxurLKw+uy3g==
|
||||
"""
|
|
@ -80,16 +80,16 @@ class RerankerService:
|
|||
return documents
|
||||
|
||||
@staticmethod
|
||||
def get_reranker_instance(config=None) -> Optional['RerankerService']:
|
||||
def get_reranker_instance() -> Optional['RerankerService']:
|
||||
"""
|
||||
Get a reranker service instance based on configuration
|
||||
Get a reranker service instance from the global configuration.
|
||||
|
||||
Args:
|
||||
config: Configuration object that may contain a reranker_instance
|
||||
|
||||
Returns:
|
||||
Optional[RerankerService]: A reranker service instance or None
|
||||
Optional[RerankerService]: A reranker service instance if configured, None otherwise
|
||||
"""
|
||||
if config and hasattr(config, 'reranker_instance') and config.reranker_instance:
|
||||
from app.config import config
|
||||
|
||||
if hasattr(config, 'reranker_instance') and config.reranker_instance:
|
||||
return RerankerService(config.reranker_instance)
|
||||
return None
|
||||
return None
|
||||
|
4512
surfsense_backend/uv.lock
generated
4512
surfsense_backend/uv.lock
generated
File diff suppressed because it is too large
Load diff
Loading…
Add table
Reference in a new issue