Fixed current agent citation issues and added sub_section_writer agent for upcoming SurfSense research agent

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-04-13 20:47:23 -07:00
parent fa5dbb786f
commit 0b93c9dfef
13 changed files with 565 additions and 81 deletions

View file

@ -13,7 +13,7 @@ class ConnectorService:
self.retriever = ChucksHybridSearchRetriever(session)
self.source_id_counter = 1
async def search_crawled_urls(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_crawled_urls(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for crawled URLs and return both the source information and langchain documents
@ -28,16 +28,16 @@ class ConnectorService:
document_type="CRAWLED_URL"
)
# Map crawled_urls_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(crawled_urls_chunks):
#Fix for UI
# Fix for UI
crawled_urls_chunks[i]['document']['id'] = self.source_id_counter
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a mapped source entry
# Create a source entry
source = {
"id": self.source_id_counter,
"title": document.get('title', 'Untitled Document'),
@ -46,14 +46,7 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use a unique identifier for tracking unique sources
source_key = source.get("url") or source.get("title")
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
@ -63,10 +56,9 @@ class ConnectorService:
"sources": sources_list,
}
return result_object, crawled_urls_chunks
async def search_files(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_files(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for files and return both the source information and langchain documents
@ -81,16 +73,16 @@ class ConnectorService:
document_type="FILE"
)
# Map crawled_urls_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(files_chunks):
#Fix for UI
# Fix for UI
files_chunks[i]['document']['id'] = self.source_id_counter
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a mapped source entry
# Create a source entry
source = {
"id": self.source_id_counter,
"title": document.get('title', 'Untitled Document'),
@ -99,14 +91,7 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use a unique identifier for tracking unique sources
source_key = source.get("url") or source.get("title")
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
@ -118,7 +103,7 @@ class ConnectorService:
return result_object, files_chunks
async def get_connector_by_type(self, user_id: int, connector_type: SearchSourceConnectorType) -> Optional[SearchSourceConnector]:
async def get_connector_by_type(self, user_id: str, connector_type: SearchSourceConnectorType) -> Optional[SearchSourceConnector]:
"""
Get a connector by type for a specific user
@ -138,7 +123,7 @@ class ConnectorService:
)
return result.scalars().first()
async def search_tavily(self, user_query: str, user_id: int, top_k: int = 20) -> tuple:
async def search_tavily(self, user_query: str, user_id: str, top_k: int = 20) -> tuple:
"""
Search using Tavily API and return both the source information and documents
@ -177,13 +162,10 @@ class ConnectorService:
# Extract results from Tavily response
tavily_results = response.get("results", [])
# Map Tavily results to the required format
# Process each result and create sources directly without deduplication
sources_list = []
documents = []
# Start IDs from 1000 to avoid conflicts with other connectors
base_id = 100
for i, result in enumerate(tavily_results):
# Create a source entry
@ -234,7 +216,7 @@ class ConnectorService:
"sources": [],
}, []
async def search_slack(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_slack(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for slack and return both the source information and langchain documents
@ -249,10 +231,10 @@ class ConnectorService:
document_type="SLACK_CONNECTOR"
)
# Map slack_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(slack_chunks):
#Fix for UI
# Fix for UI
slack_chunks[i]['document']['id'] = self.source_id_counter
# Extract document metadata
document = chunk.get('document', {})
@ -286,14 +268,7 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use channel_id and content as a unique identifier for tracking unique sources
source_key = f"{channel_id}_{chunk.get('chunk_id', i)}"
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
@ -305,7 +280,7 @@ class ConnectorService:
return result_object, slack_chunks
async def search_notion(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_notion(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for Notion pages and return both the source information and langchain documents
@ -326,8 +301,8 @@ class ConnectorService:
document_type="NOTION_CONNECTOR"
)
# Map notion_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(notion_chunks):
# Fix for UI
notion_chunks[i]['document']['id'] = self.source_id_counter
@ -365,14 +340,7 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use page_id and content as a unique identifier for tracking unique sources
source_key = f"{page_id}_{chunk.get('chunk_id', i)}"
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
@ -384,7 +352,7 @@ class ConnectorService:
return result_object, notion_chunks
async def search_extension(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_extension(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for extension data and return both the source information and langchain documents
@ -405,8 +373,8 @@ class ConnectorService:
document_type="EXTENSION"
)
# Map extension_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(extension_chunks):
# Fix for UI
extension_chunks[i]['document']['id'] = self.source_id_counter
@ -462,14 +430,7 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use URL and timestamp as a unique identifier for tracking unique sources
source_key = f"{webpage_url}_{visit_date}"
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
@ -481,7 +442,7 @@ class ConnectorService:
return result_object, extension_chunks
async def search_youtube(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20) -> tuple:
async def search_youtube(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20) -> tuple:
"""
Search for YouTube videos and return both the source information and langchain documents
@ -502,8 +463,8 @@ class ConnectorService:
document_type="YOUTUBE_VIDEO"
)
# Map youtube_chunks to the required format
mapped_sources = {}
# Process each chunk and create sources directly without deduplication
sources_list = []
for i, chunk in enumerate(youtube_chunks):
# Fix for UI
youtube_chunks[i]['document']['id'] = self.source_id_counter
@ -541,18 +502,11 @@ class ConnectorService:
}
self.source_id_counter += 1
# Use video_id as a unique identifier for tracking unique sources
source_key = video_id or f"youtube_{i}"
if source_key and source_key not in mapped_sources:
mapped_sources[source_key] = source
# Convert to list of sources
sources_list = list(mapped_sources.values())
sources_list.append(source)
# Create result object
result_object = {
"id": 6, # Assign a unique ID for the YouTube connector
"id": 7, # Assign a unique ID for the YouTube connector
"name": "YouTube Videos",
"type": "YOUTUBE_VIDEO",
"sources": sources_list,