Improve and document location estimation algorithm

This commit is contained in:
Daniel 2021-10-19 10:49:19 +02:00
parent 0addff9449
commit 0d88a6982a

View file

@ -30,57 +30,55 @@ type Coordinates struct {
Longitude float64 `maxminddb:"longitude"`
}
// About GeoLite2 City accuracy_radius:
//
// range: 1-1000
// seen values (from memory): 1,5,10,20,50,100,200,500,1000
// default seems to be 100
//
// examples:
// 1.1.1/24 has 1000: Anycast
// 8.8.0/19 has 1000: Anycast
// 8.8.52/22 has 1: City of Westfield
//
// Conclusion:
// - Ignore location data completely if accuracy_radius > 500
// EstimateNetworkProximity aims to calculate the distance between two network locations. Returns a proximity value between 0 (far away) and 100 (nearby).
func (l *Location) EstimateNetworkProximity(to *Location) (proximity int) {
// Distance Value:
// 0: other side of the Internet
// 100: same network/datacenter
/*
Distance Value
// Weighting:
// continent match: 25
// country match: 20
// AS owner match: 25
// AS network match: 20
// coordinate distance: 0-10
- 0: Other side of the Internet.
- 100: Very near, up to same network / datacenter.
// continent match: 25
if l.Continent.Code == to.Continent.Code {
proximity += 25
// country match: 20
if l.Country.ISOCode == to.Country.ISOCode {
proximity += 20
Weighting Goal
- Exposure to different networks shall be limited as much as possible.
- A single network should not see a connection over a large distance.
- Latency should be low.
Weighting Intentions
- Being on the same continent is better than being in the same AS.
- Being in the same country is better than having low coordinate distance.
- Coordinate distance is only a tie breaker, as accuracy varies heavily.
- Same AS with lower coordinate distance beats being on the same continent.
Weighting Configuration
- Continent match: 30
- Country match: 25
- ASOrg match: 20
- ASN match: 15
- Coordinate distance: 0-10
*/
if l.Continent.Code != "" &&
l.Continent.Code == to.Continent.Code {
proximity += 30
if l.Country.ISOCode != "" &&
l.Country.ISOCode == to.Country.ISOCode {
proximity += 25
}
}
// AS owner match: 25
if l.AutonomousSystemOrganization == to.AutonomousSystemOrganization {
proximity += 25
// AS network match: 20
if l.AutonomousSystemNumber == to.AutonomousSystemNumber {
proximity += 20
if l.AutonomousSystemOrganization != "" &&
l.AutonomousSystemOrganization == to.AutonomousSystemOrganization {
proximity += 20
if l.AutonomousSystemNumber != 0 &&
l.AutonomousSystemNumber == to.AutonomousSystemNumber {
proximity += 15
}
}
// coordinate distance: 0-10
fromCoords := haversine.Coord{Lat: l.Coordinates.Latitude, Lon: l.Coordinates.Longitude}
toCoords := haversine.Coord{Lat: to.Coordinates.Latitude, Lon: to.Coordinates.Longitude}
_, km := haversine.Distance(fromCoords, toCoords)
// adjust accuracy value
// Check coordinates and adjust accuracy value.
accuracy := l.Coordinates.AccuracyRadius
switch {
case l.Coordinates.Latitude == 0 && l.Coordinates.Longitude == 0:
@ -93,12 +91,37 @@ func (l *Location) EstimateNetworkProximity(to *Location) (proximity int) {
accuracy = to.Coordinates.AccuracyRadius
}
if km <= 10 && accuracy <= 100 {
/*
About the Accuracy Radius
- Range: 1-1000
- Seen values (estimation): 1,5,10,20,50,100,200,500,1000
- The default seems to be 100.
Cxamples
- 1.1.1/24 has 1000: Anycast
- 8.8.0/19 has 1000: Anycast
- 8.8.52/22 has 1: City of Westfield
Conclusion
- Ignore or penalize high accuracy radius.
*/
// Calculate coordinate distance in kilometers.
fromCoords := haversine.Coord{Lat: l.Coordinates.Latitude, Lon: l.Coordinates.Longitude}
toCoords := haversine.Coord{Lat: to.Coordinates.Latitude, Lon: to.Coordinates.Longitude}
_, km := haversine.Distance(fromCoords, toCoords)
if km <= 50 && accuracy <= 100 {
// Give a flat out ten for highly accurate coordinates within 50km.
proximity += 10
} else {
// Else, take a percentage.
distanceInPercent := (earthCircumferenceInKm - km) * 100 / earthCircumferenceInKm
// apply penalty for locations with low accuracy (targeting accuracy radius >100)
// Apply penalty for locations with low accuracy (targeting accuracy radius >100).
accuracyModifier := 1 - float64(accuracy)/2000
proximity += int(distanceInPercent * 0.10 * accuracyModifier)
}