blt/blt_args.py
ita.zaporozhets@huggingface.co c2108e7256 move args out
2025-06-03 15:29:01 +00:00

248 lines
7.7 KiB
Python

from enum import Enum, auto
from typing import Any, List, Optional, Tuple, Union
from pydantic import BaseModel, ConfigDict, model_validator
from typing_extensions import Self
from bytelatent.tokenizers.constants import BOE_ID, BOS_ID, EOS_ID, OFFSET, PAD_ID
class InitStdFactor(str, Enum):
DISABLED = "disabled" # Init std is divided by 1.0
GLOBAL_DEPTH = "global_depth" # Init std is divided by sqrt(2*n_layers)
CURRENT_DEPTH = "current_depth" # Init std is divided by sqrt(2*depth)
DIM_RATIO = "dim_ratio" # Init std is divided by model_dim/4096
class BaseTransformerArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
dim: int = 512
n_layers: int = 8
head_dim: int | None = None
n_heads: int | None = None
n_kv_heads: int | None = None
ffn_dim_multiplier: float | None = None
multiple_of: int = 256
norm_eps: float = 1e-5
rope_theta: float = 10000.0
rope_use_fp32_in_outer_product: bool = False
init_base_std: float | None = None
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
max_seqlen: int = 1024
attn_impl: str | None = "sdpa"
attn_bias_type: str | None = None
# Special token config
eos_id: int | None = EOS_ID
class ByteLatentTransformerArgs(BaseTransformerArgs):
# Basic model configuration
seed: int = 42
vocab_size: int = -1
dim: int = 512
n_layers: int = 8
n_heads: int = 8
# TODO: What is the purpose of this parameter?
weight_tying: bool = False
patch_in_forward: bool = False
# Architecture and dimensions
dim_token: int | None = None
dim_global: int = 512
dim_local_decoder: int = 512
dim_local_encoder: int = 512
n_layers_global: int = 8
n_layers_local_decoder: int = 8
n_layers_local_encoder: int = 8
# Tokenization and patching
patch_size: float | None = None
patching_mode: str | None = None
patching_threshold: float | None = None
patching_threshold_add: float | None = None
monotonicity: bool = False
patching_batch_size: int = 1
patching_device: str = "cuda"
max_patch_length: int | None = None
# Encoder/Decoder configuration
tie_local_encoder_decoder_logits: bool = False
use_local_encoder_transformer: bool = False
encoder_lm_loss: bool = False
max_encoder_seq_length: int | None = None
pad_to_max_length: bool = False
encoder_enable_byte_ngrams: bool = False
encoder_enable_byte_group_hash: bool = False
ngram_vocab_sizes: int | None = None
# Cross attention configurations
cross_attn_encoder: bool = False
cross_attn_decoder: bool = False
cross_attn_window_encoder: int | None = None
cross_attn_window_decoder: int | None = None
cross_attn_k: int | None = None
cross_attn_nheads: int | None = None
cross_attn_all_layers_decoder: bool = False
cross_attn_all_layers_encoder: bool = False
cross_attn_use_flex_attention: bool = True
cross_attn_init_by_pooling: bool = False
# Encoder hash configurations
encoder_hash_byte_group_size: Any | None = None
encoder_hash_byte_group_vocab: int = 30000
encoder_hash_byte_group_nb_functions: int = 3
# Model behavior and optimization
log_patch_lengths: bool = False
non_linearity: str = "swiglu"
use_rope: bool = True
recompute_fc1_out: bool = False
recompute_fc3_out: bool = False
recompute_attn: bool = True
custom_bwd: bool = False
layer_ckpt: str = "all"
# Initialization and attention
init_use_gaussian: bool = True
init_use_depth: str = "current"
attn_bias_type: str = "causal"
alpha_depth: str = "disabled"
max_length: int = 2048
# Norm configuration
norm_eps: float = 1e-5
norm_affine: bool = True
pre_norm: bool = True
norm_type: str = "rmsnorm"
# Additional configurations
multiple_of: int = 256
ffn_dim_multiplier: float = 1.0
dropout: float = 0
output_size: int = -1
# Additional parameters from ModelArgs
architecture: str = "vanilla"
share_encoder_decoder_emb: bool = True
global_local_decoder_residual_layer: str | None = None
tokenize_with_bpe_delimiter: bool = False
patching_thresholds_str: str | None = None
tie_local_encoder_decoder: bool = False
encoder_preds_low_entropy_toks: float | None = None
encoder_preds_random_toks: float | None = None
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
encoder_ngram_table_dir: str | None = None
encoder_ngram_to_size_str: str | None = None
# Model architecture params
entropy_model_checkpoint_dir: str | None = None
entropy_model_is_ngram_model: bool = False
downsampling_by_pooling: str | None = None
n_heads_global: int = 8
n_heads_local_decoder: int = 8
n_heads_local_encoder: int = 8
n_kv_heads: int | None = None
n_kv_heads_global: int | None = None
conv_kernel_size: int | None = None
local_attention_window_len: int | None = None
# Performance optimization
sequence_parallel: bool = False
loss_parallel: bool = False
fuse_sequence_parallel: bool = False
use_fsdp: bool = True
attn_to_keep: str = "all"
# Parameter mixing
pm_size: int = 0
# Logging
full_logging_n_layers: int = 4
@model_validator(mode="after")
def check_hash_byte_sizes(self) -> Self:
if (
self.encoder_hash_byte_group_size is not None
and type(self.encoder_hash_byte_group_size) == str
):
self.encoder_hash_byte_group_size = [
int(x)
for x in self.encoder_hash_byte_group_size.split(",")
if len(x) > 0
]
return self
class GlobalTransformerArgs(ByteLatentTransformerArgs):
# Global encoder specific dimensions
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
def __post_init__(self):
# Override base args with global encoder specific values
self.dim = self.dim_global
self.n_layers = self.n_layers_global
self.n_heads = self.n_heads_global
self.n_kv_heads = self.n_kv_heads_global
self.local_attention_window_len = None
self.cross_attn_encoder = False
self.cross_attn_decoder = False
class LocalDecoderArgs(ByteLatentTransformerArgs):
# Local decoder specific dimensions
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
def __post_init__(self):
# Override base args with local decoder specific values
self.dim = self.dim_local_decoder
self.n_layers = self.n_layers_local_decoder
self.n_heads = self.n_heads_local_decoder
self.cross_attn_encoder = False
self.cross_attn_init_by_pooling = False
self.attn_bias_type = "local_block_causal"
class LocalModelArgs(BaseTransformerArgs):
model_config = ConfigDict(extra="forbid")
# Override defaults
attn_impl: str | None = "xformers"
attn_bias_type: str | None = "local_block_causal"
# Local encoder specific dimensions
dropout: float
vocab_size: int
patch_size: float
sliding_window: int | None
use_rope: bool
cross_attn_encoder: bool | None
cross_attn_decoder: bool | None
cross_attn_k: int | None
cross_attn_init_by_pooling: bool
patching_mode: str
use_local_encoder_transformer: bool
downsampling_by_pooling: str | None
encoder_hash_byte_group_size: Any | None = None
cross_attn_all_layers_encoder: bool = False
cross_attn_all_layers_decoder: bool = False
cross_attn_nheads: int | None
dim_token_emb: int
dim_patch_emb: int | None
class LMTransformerArgs(BaseTransformerArgs):
seed: int = 42
vocab_size: int = -1
weight_tying: bool = False
sliding_window: int | None = None