blt/bytelatent/stool.py
Pedro Rodriguez 9c3c997cae
Some checks failed
Lint with Black / lint (push) Has been cancelled
Lint with isort / lint (push) Has been cancelled
Allow ArrowIterator to read from json
Summary:

Currently, arrow iterator can only read arrow files. However, the pyarrow library can read
other formats, including jsonlines. This allows the same ArrowIterator to read from jsonlines,
so we can read from the original source data, and simply omit the entropy column when doing so

Test Plan:

Run train script until dataloader starts
2025-02-06 17:44:36 +00:00

238 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import os
import shutil
import subprocess
from typing import Any, Dict
from omegaconf import OmegaConf
from pydantic import BaseModel
class StoolArgs(BaseModel):
name: str = None
dump_dir: str = None
config: Any = None
launcher: str = "sbatch" # Can be sbatch or bash if already in salloc
script: str = "apps.main.train" # The script to run.
copy_code: bool = True # Wether to copy code to dump dir
dirs_exists_ok: bool = (
False # Wether to copy new code and config and run regardless that dir exists
)
override: bool = False # Wether to delete dump dir and restart
nodes: int = -1 # The number of nodes to run the job on.
ngpu: int = 8 # The number of GPUs required per node.
ncpu: int = 16 # The number of CPUs allocated per GPU.
mem: str = "" # The amount of memory to allocate.
anaconda: str = "default" # The path to the anaconda environment.
constraint: str = "" # The constraint on the nodes.
exclude: str = "" # The nodes to exclude.
time: int = -1 # The time limit of the job (in minutes).
account: str = ""
qos: str = ""
partition: str = "learn"
stdout: bool = False
SBATCH_COMMAND = """#!/bin/bash
{exclude}
{qos}
{account}
{constraint}
#SBATCH --job-name={name}
#SBATCH --nodes={nodes}
#SBATCH --gres=gpu:{ngpus}
#SBATCH --cpus-per-gpu={ncpu}
#SBATCH --time={time}
#SBATCH --partition={partition}
#SBATCH --mem={mem}
#SBATCH --output={dump_dir}/logs/%j/%j.stdout
#SBATCH --error={dump_dir}/logs/%j/%j.stderr
#SBATCH --open-mode=append
#SBATCH --signal=USR2@120
#SBATCH --distribution=block
# Mimic the effect of "conda init", which doesn't work for scripts
eval "$({conda_exe} shell.bash hook)"
source activate {conda_env_path}
{go_to_code_dir}
export OMP_NUM_THREADS=1
export LAUNCH_WITH="SBATCH"
export DUMP_DIR={dump_dir}
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml dump_dir=$DUMP_DIR name={name}
"""
def copy_dir(input_dir: str, output_dir: str) -> None:
print(f"Copying : {input_dir}\n" f"to : {output_dir} ...")
assert os.path.isdir(input_dir), f"{input_dir} is not a directory"
assert os.path.isdir(output_dir), f"{output_dir} is not a directory"
rsync_cmd = (
f"rsync -arm --copy-links "
f"--include '**/' "
f"--include '*.py' "
f"--exclude='*' "
f"{input_dir}/ {output_dir}"
)
print(f"Copying command: {rsync_cmd}")
subprocess.call([rsync_cmd], shell=True)
print("Copy done.")
def retrieve_max_time_per_partition() -> Dict[str, int]:
# retrieve partition max times (a bit slow)
sinfo = json.loads(subprocess.check_output("sinfo --json", shell=True))["sinfo"]
max_times: Dict[str, int] = {}
for info in sinfo:
if info["partition"]["maximums"]["time"]["infinite"]:
max_times[info["partition"]["name"]] = 14 * 24 * 60 # 14 days
else:
max_times[info["partition"]["name"]] = info["partition"]["maximums"][
"time"
][
"number"
] # in minutes
return max_times
def validate_args(args) -> None:
# Set maximum time limit if not specified
if args.time == -1:
max_times = retrieve_max_time_per_partition()
args.time = max_times.get(
args.partition, 3 * 24 * 60
) # Default to 3 days if not found
print(
f"No time limit specified, using max time for partitions: {args.time} minutes"
)
if args.constraint:
args.constraint = f"#SBATCH --constraint={args.constraint}"
if args.account:
args.account = f"#SBATCH --account={args.account}"
if args.qos:
args.qos = f"#SBATCH --qos={args.qos}"
if getattr(args, "exclude", ""):
args.exclude = f"#SBATCH --exclude={args.exclude}"
if hasattr(args, "anaconda") and args.anaconda:
if args.anaconda == "default":
args.anaconda = (
subprocess.check_output("which python", shell=True)
.decode("ascii")
.strip()
)
else:
args.anaconda = f"{args.anaconda}/bin/python"
assert os.path.isfile(args.anaconda)
args.mem = args.mem or "0"
assert args.partition
assert args.ngpu > 0
assert args.ncpu > 0
assert args.nodes > 0
assert args.time > 0
assert args.partition
def launch_job(args: StoolArgs):
# Set up args default and validate them depending on the cluster or partition requested
validate_args(args)
job_name = args.name or args.config["name"]
dump_dir = os.path.join(args.dump_dir, job_name) or args.config["dump_dir"]
print("Creating directories...")
os.makedirs(dump_dir, exist_ok=args.dirs_exists_ok or args.override)
if args.override:
confirm = input(
f"Are you sure you want to delete the directory '{dump_dir}'? This action cannot be undone. (yes/no): "
)
if confirm.lower() == "yes":
shutil.rmtree(dump_dir)
print(f"Directory '{dump_dir}' has been deleted.")
else:
print("Operation cancelled.")
return
if args.copy_code:
os.makedirs(f"{dump_dir}/code", exist_ok=args.dirs_exists_ok)
print("Copying code ...")
copy_dir(os.getcwd(), f"{dump_dir}/code")
print("Saving config file ...")
with open(f"{dump_dir}/base_config.yaml", "w") as cfg:
cfg.write(OmegaConf.to_yaml(args.config))
conda_exe = os.environ.get("CONDA_EXE", "conda")
conda_env_path = os.path.dirname(os.path.dirname(args.anaconda))
log_output = (
"-o $DUMP_DIR/logs/%j/%j_%t.out -e $DUMP_DIR/logs/%j/%j_%t.err"
if not args.stdout
else ""
)
sbatch = SBATCH_COMMAND.format(
name=job_name,
script=args.script,
dump_dir=dump_dir,
nodes=args.nodes,
tasks=args.nodes * args.ngpu,
nodes_per_run=args.nodes,
ngpus=args.ngpu,
ncpu=args.ncpu,
mem=args.mem,
qos=args.qos,
account=args.account,
constraint=args.constraint,
exclude=args.exclude,
time=args.time,
partition=args.partition,
conda_exe=conda_exe,
conda_env_path=conda_env_path,
log_output=log_output,
go_to_code_dir=f"cd {dump_dir}/code/" if args.copy_code else "",
)
print("Writing sbatch command ...")
with open(f"{dump_dir}/submit.slurm", "w") as f:
f.write(sbatch)
print("Submitting job ...")
os.system(f"{args.launcher} {dump_dir}/submit.slurm")
print("Done.")
if __name__ == "__main__":
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
mode: LMTransformerArgs
@dataclass
class LMTransformerArgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgs
or just name=tictac for top level attributes.
"""
args = OmegaConf.from_cli()
args.config = OmegaConf.load(args.config)
args = StoolArgs.model_validate(args)
launch_job(args)