blt/bytelatent/eval.py
Pedro Rodriguez 7044771a12
Some checks failed
Lint with Black / lint (push) Has been cancelled
Lint with isort / lint (push) Has been cancelled
This includes fixes that make checkpointing and reloading work correctly. (#35)
It also batches in a first set of changes for fixing eval code

Summary:

Test Plan:
2025-01-27 16:56:42 -08:00

260 lines
8.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import os
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import Any
import torch
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from omegaconf import OmegaConf
from pydantic import BaseModel, ConfigDict
from bytelatent.args import EvalArgs, ValidationArgs, parse_args
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.data.file_util import get_fs
from bytelatent.distributed import (
DistributedArgs,
dist_mean_dict,
get_global_rank,
get_world_size,
setup_torch_distributed,
)
from bytelatent.generate import (
PackedCausalTransformerGenerator,
load_consolidated_model_and_tokenizer,
)
from bytelatent.transformer import LMTransformer, LMTransformerArgs
EVAL_FOLDER_NAME = "{:010d}"
logger = logging.getLogger()
def all_dicts_same(dict_list):
if not dict_list: # Check if the list is empty
return True
# Compare each dictionary to the first one
first_dict = dict_list[0]
return all(d == first_dict for d in dict_list)
class MockAccelerator:
def gather(self, tensor):
l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
torch.distributed.all_gather(l, tensor)
return torch.stack(l)
def wait_for_everyone(self):
torch.distributed.barrier()
# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
def __init__(self, generator):
super().__init__()
self.generator = generator
self.accelerator = MockAccelerator()
self._rank = get_global_rank()
self._world_size = get_world_size()
self.device = generator.device
def generate_until(self, requests: list[Instance]) -> list[str]:
prompts, gen_args = zip(*[req.args for req in requests])
assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
gen_args = gen_args[0]
temperature = gen_args.get("temperature", 0.0)
top_p = gen_args.get("top_p", None)
top_k = gen_args.get("top_k", None)
until = gen_args.get("until", [])
self.generator.temperature = temperature
self.generator.top_p = top_p
self.generator.top_k = top_k
self.generator.until = until
generations, _, _ = self.generator.generate(prompts)
filtered_gen = []
for g in generations:
for e in until:
g = g.replace(e, "")
filtered_gen.append(g)
return filtered_gen
def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
prompts, continuations = zip(*[req.args for req in requests])
inputs = [req.args[0] + req.args[1] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, greedy = self.generator.generate(inputs)
results = []
for p, ll, gr in zip(prompts, lls, greedy):
p_len = len(
self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
)
results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))
self.generator.max_gen_len = max_gen_len
return results
def loglikelihood_rolling(self, requests: list[Instance]) -> list[float]:
prompts = [req.args[0] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, _ = self.generator.generate(prompts)
results = []
for ll in lls:
results.append((ll.sum().item(),))
self.generator.max_gen_len = max_gen_len
return results
def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
srcs = {}
for src in val_args.sources:
path = os.path.join(val_args.root_dir, src)
srcs[path] = 1.0
for src in train_cfg.data.sources:
path = os.path.join(train_cfg.data.root_dir, src)
srcs[path] = 1.0
multi_state = init_choice_state(
"", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
)
path_to_iter = setup_sources(multi_state)
max_gen_len = generator.max_gen_len
# We temporarily lower max gen len
generator.max_gen_len = 1
all_val_metrics = {}
for src in path_to_iter:
jsonl_iterator = path_to_iter[src]
texts = []
logger.info(f"Running validation on {src}...")
for step, (content, state) in enumerate(jsonl_iterator):
if state["current_iter"] > 0 or (
val_args.max_steps is not None and step >= val_args.max_steps
):
break
content_key = "text" if ("text" in content) else "content"
texts.append(content[content_key])
_, loglikelihood, _ = generator.generate(texts)
metrics = defaultdict(list)
for i, ll in enumerate(loglikelihood):
tmp = ll.sum().item()
metrics["nll"].append(tmp)
metrics["nll_per_token"].append(tmp / len(ll))
metrics["nll_per_char"].append(tmp / len(texts[i]))
metrics["avg_seqlen"].append(len(ll))
for m in metrics:
metrics[m] = sum(metrics[m]) / len(metrics[m])
metrics.update(dist_mean_dict(metrics))
logger.info(f"Validation on {src} done. Metrics: {metrics}")
name = os.path.basename(src)
if name in all_val_metrics:
logger.warning(
f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
)
name = f"{name}_1"
all_val_metrics[name] = metrics
generator.max_gen_len = max_gen_len
return all_val_metrics
def launch_eval(eval_args: EvalArgs):
if not torch.distributed.is_initialized():
setup_torch_distributed(DistributedArgs())
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
if (
fs.exists(eval_args.ckpt_dir)
and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
):
consolidate_path = eval_args.ckpt_dir
else:
consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
if not fs.exists(consolidate_path) and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(eval_args.ckpt_dir)
fs.mkdirs(eval_args.dump_dir, exist_ok=True)
with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
f.write(eval_args.model_dump_json())
torch.distributed.barrier()
logger.info("Loading model")
# TODO: Make this general so that it works with either
# LMTransformer or Blt, similar with args
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path,
)
logger.info("Model loaded")
model.eval()
generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)
wrap = EvalHarnessLM(generator)
# Redo
results = simple_evaluate(wrap, eval_args.harness.model_dump())
val_results = None
if eval_args.validation:
val_results = eval_on_val(generator, eval_args.validation, train_cfg)
if get_global_rank() == 0:
with fs.open(os.path.join(eval_args.dump_dir, "results.json"), "w") as f:
f.write(json.dumps(results))
logger.info(f"All evaluation results: {results['results']}")
if val_results is not None:
with fs.open(os.path.join(eval_args.dump_dir, "validation.json"), "w") as f:
f.write(json.dumps(val_results))
logger.info(f"All validation results: {val_results}")
if eval_args.metric_log_dir and get_global_rank() == 0:
metric_log_path = os.path.join(eval_args.metric_log_dir, "metrics.eval.jsonl")
logger.info(f"Writing metric logs to {metric_log_path}")
timestamp = {
"created_at": datetime.utcnow().isoformat(),
}
if eval_args.global_step is not None:
timestamp["global_step"] = eval_args.global_step
print(
json.dumps(timestamp | results["results"]),
file=fs.open(metric_log_path, mode="a"),
flush=True,
)
val_log_path = os.path.join(
eval_args.metric_log_dir, "metrics.validation.jsonl"
)
if val_results is not None:
print(
json.dumps(timestamp | val_results),
file=fs.open(val_log_path, mode="a"),
flush=True,
)
del generator
def main():
eval_args = parse_args(EvalArgs)
launch_eval(eval_args)
if __name__ == "__main__":
main()