blt/bytelatent/train.py
Pedro Rodriguez 6ffeb66b53
Some checks are pending
Lint with Black / lint (push) Waiting to run
Lint with isort / lint (push) Waiting to run
Changes for training entropy model and correcting attention in local models (#25)
Summary:

- Refactor local model configs to be separate and clearer
- Add attention arguments and correct which attention is used in local models
- Preparation for being able to have an entropy train script
- Fix failing unit tests

Test Plan:
2025-01-17 14:23:01 -08:00

656 lines
24 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import gc
import logging
import os
import sys
from contextlib import ExitStack
from copy import deepcopy
from dataclasses import asdict, dataclass
from pathlib import Path
from timeit import default_timer as timer
from typing import Any, Dict, Type, TypeVar
import torch
import torch.distributed
import torch.nn.functional
import torch.nn.functional as F
import wandb
import xformers.profiler
from omegaconf import OmegaConf
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint.stateful import Stateful
from torch.optim import lr_scheduler
from bytelatent.args import TrainArgs
from bytelatent.checkpoint import CheckpointManager, load_from_checkpoint
from bytelatent.data.data_types import DataLoaderState
from bytelatent.distributed import (
check_model_value_range,
clean_env,
dist_mean_dict,
get_device_mesh,
get_is_master,
get_world_size,
init_signal_handler,
parallelize_model,
requeue_slurm_job,
setup_env,
setup_torch_distributed,
)
from bytelatent.logger import init_logger
from bytelatent.metrics import GPUMemoryMonitor, MetricLogger, get_num_params
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.optim import build_optimizer
from bytelatent.probe import AutoProbeD
from bytelatent.profiling import maybe_run_profiler
from bytelatent.stool import StoolArgs, launch_job
from bytelatent.transformer import (
build_fsdp_grouping_plan,
get_no_recompute_ops,
get_num_flop_per_token,
tp_parallelize,
)
logger = logging.getLogger()
T = TypeVar("T")
def flatten_dict(d, parent_key="", sep="_"):
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def dataclass_from_dict(cls: Type[T], data: dict, strict: bool = True) -> T:
"""
Converts a dictionary to a dataclass instance, recursively for nested structures.
"""
base = OmegaConf.structured(cls())
OmegaConf.set_struct(base, strict)
override = OmegaConf.create(data)
return OmegaConf.to_object(OmegaConf.merge(base, override))
@dataclass
class TrainState(Stateful):
step: int # Nb of steps taken by the optimizer
acc_step: int # Nb of accumulation steps done since last optimizer step
scheduler: lr_scheduler.LambdaLR
data_loader_state: DataLoaderState
scale: float = 1.0
def state_dict(self) -> Dict[str, Any]:
return {
"step": self.step,
"acc_step": self.acc_step,
"data_loader_state": self.data_loader_state.dict(),
"scheduler": self.scheduler.state_dict(),
}
def load_state_dict(self, state_dict):
self.step = state_dict["step"]
self.acc_step = state_dict["acc_step"]
self.data_loader_state = DataLoaderState(**state_dict["data_loader_state"])
self.scheduler.load_state_dict(state_dict["scheduler"])
def validate_train_args(args: TrainArgs, output_size: int):
if args.model.vocab_size < 0:
logger.info(f"Setting model output size to {args.model.vocab_size}")
args.model.vocab_size = output_size
assert args.dump_dir, "Dump dir not set"
if args.checkpoint.path is None:
logger.info(f"Setting checkpoint path to {args.checkpoint.path}")
args.checkpoint.path = str(Path(args.dump_dir) / "checkpoints")
for source in args.data.sources:
data_path = os.path.join(args.data.root_dir, source)
assert os.path.exists(data_path), f"{data_path} doesn't exist"
if (
args.distributed.dp_replicate
* args.distributed.dp_shard
* args.distributed.tp_size
!= get_world_size()
):
assert get_world_size() % args.distributed.dp_shard == 0
args.distributed.dp_replicate = get_world_size() // args.distributed.dp_shard
assert args.distributed.dp_replicate % args.distributed.tp_size == 0
args.distributed.dp_replicate = (
args.distributed.dp_replicate // args.distributed.tp_size
)
logger.warning(
f"Setting Data Parallel size to {args.distributed.dp_replicate * args.distributed.dp_shard}"
)
assert (
args.distributed.dp_replicate
* args.distributed.dp_shard
* args.distributed.tp_size
== get_world_size()
)
if args.distributed.fsdp_type == "no_shard":
assert (
args.distributed.dp_shard == 1
and args.distributed.dp_replicate == get_world_size()
)
args.model.max_seqlen = args.data.seq_len
if args.distributed.tp_size == 1:
logger.warning(
"Tensor parallelism has not been tested for a while, use at your own risk"
)
assert (
args.probe_freq != args.profiling.mem_steps
), "Don't profile during probe step"
assert (
args.probe_freq != args.profiling.profile_steps
), "Don't profile during probe step"
if args.logging.wandb is not None:
args.logging.wandb.name = args.name
if args.probe_freq is not None:
assert (
args.distributed.tp_size == 1
), "Probing not supported with tensor parallelism"
assert (
args.distributed.selective_activation_checkpointing is False
), "Probing not supported with selective activation checkpointing"
preemption_flag = dict(flag=False)
def set_preemption_flag(signum, frame):
logger.warning("Signal handler called with signal " + str(signum))
logger.warning("Preemption ! checkpointing asap and exiting.")
preemption_flag["flag"] = True
def every_n_steps(train_state, freq, acc_step=None, acc_freq=None):
test = train_state.step % freq == 0
if acc_step is not None:
test = test and (train_state.acc_step == acc_step)
elif acc_freq is not None:
test = test and ((train_state.acc_step % acc_freq) == 0)
return test
def compute_loss(p, y, mask, scale):
tok_loss = scale * F.cross_entropy(
p.flatten(0, 1), y.flatten(0, 1), reduction="none"
)
if mask is None:
loss = tok_loss.mean()
else:
mask = mask.flatten(0, 1)
tok_loss = tok_loss * mask
loss = tok_loss.sum() / (mask.sum() + 1e-6)
return loss, tok_loss
def train(args: TrainArgs):
with ExitStack() as context_stack:
tokenizer = args.data.tokenizer_args.build()
validate_train_args(
args,
tokenizer.n_words,
)
if get_is_master():
os.makedirs(args.dump_dir, exist_ok=True)
args.dump_to_yaml_file(Path(args.dump_dir) / "config.yaml")
init_logger(Path(args.dump_dir) / "train.log")
init_signal_handler(set_preemption_flag) # For handling preemption signals.
setup_env(args.env)
setup_torch_distributed(args.distributed)
world_mesh = get_device_mesh(args.distributed)
logger.info(f"Starting job: {args.name}")
# build dataloader
# need dp world size and rank
dp_mesh = world_mesh["dp_replicate"]
dp_degree = dp_mesh.size()
dp_rank = dp_mesh.get_local_rank()
if args.distributed.dp_shard > 1:
dp_rank = dp_rank * dp_degree + world_mesh["dp_shard"].get_local_rank()
dp_degree *= world_mesh["dp_shard"].size()
logger.info(f"Running on dp rank : {dp_rank}")
logger.info(f"Running on dp size : {dp_degree}")
torch.manual_seed(args.seed)
logger.info("Building model")
# Initializing Model in meta device allows us to initialize models much bigger than 1 gpu's memory
with torch.device("meta"):
model = ByteLatentTransformer(args.model)
logger.info("Model is built !")
model_param_count = get_num_params(model)
model = parallelize_model(
model,
world_mesh,
args.model,
args.distributed,
fsdp_grouping_plan=build_fsdp_grouping_plan(args.model),
tp_parallelize=tp_parallelize,
no_recompute_ops=get_no_recompute_ops(),
)
# Once we shard the model on different gpus we can actually initialize the model
# First we create empty tensors of the correct shapes
model = model.to_empty(device="cuda")
# Then we init the model. Please make sure this function initializes *ALL* parameters
# and buffers, otherwise you will have random values in the unitialized tensors
# which will silently fail (give nan gradients for example)
if args.checkpoint.init_ckpt_path:
logger.info(f"Loading initial model from {args.checkpoint.init_ckpt_path}")
load_from_checkpoint(
args.checkpoint.init_ckpt_path, model, model_key="model"
) # Put model_key="" if its directly the model checkpoint
model.rope_embeddings.reset_parameters() # For RoPe initialization since it's a buffer it might not be loaded
else:
with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
torch.manual_seed(args.model.seed)
model.init_weights()
check_model_value_range(model, range=10.0, std=1.0)
# log model size
logger.info(f"Model size: {model_param_count:,} total parameters")
gpu_memory_monitor = GPUMemoryMonitor("cuda")
logger.info(
f"GPU capacity: {gpu_memory_monitor.device_name} ({gpu_memory_monitor.device_index}) "
f"with {gpu_memory_monitor.device_capacity_gib:.2f}GiB memory"
)
logger.info(f"GPU memory usage: {gpu_memory_monitor}")
# build optimizer after apply parallelisms to the model
optimizer, scheduler = build_optimizer(model, args.optim, args.steps)
data_loader = args.data.build_from_rank(dp_rank, dp_degree)
data_loader_state = data_loader.get_state()
train_state = TrainState(
step=0,
acc_step=0,
data_loader_state=data_loader_state,
scheduler=scheduler,
scale=1.0,
)
checkpoint = CheckpointManager.instantiate_and_make_dir(args.checkpoint)
checkpoint.load(model, optimizer, train_state, world_mesh)
# Either load from latest checkpoint or start from scratch
if args.probe_freq is not None:
if get_is_master():
os.makedirs(Path(args.dump_dir) / "probe", exist_ok=True)
torch.distributed.barrier()
probe = AutoProbeD(
model,
(
Path(args.dump_dir) / "probe" / f"probe.{dp_rank}.jsonl"
if (dp_rank % 128 == 0)
else None
),
)
probe_mod = model._orig_mod if args.distributed.compile else model
gc.disable()
# train loop
model.train()
metric_logger = context_stack.enter_context(
MetricLogger(Path(args.dump_dir) / "metrics.jsonl", args)
)
data_loader = train_state.data_loader_state.build()
batch_iterator = data_loader.create_iter()
torch_profiler = context_stack.enter_context(
maybe_run_profiler(args.dump_dir, model, args.profiling)
)
nwords_since_last_log = 0
time_last_log = timer()
gc.collect()
while train_state.step < args.steps:
# We constrain train_state.acc_step to be in range 0 to args.grad_acc_steps - 1
train_state.acc_step += 1
train_state.acc_step = train_state.acc_step % args.grad_acc_steps
# get batch
curr_lr = float(optimizer.param_groups[0]["lr"])
data_load_start = timer()
batch = next(batch_iterator)
batch_x = torch.from_numpy(
batch.x,
).cuda()
batch_y = torch.from_numpy(batch.y).cuda()
batch_patch_lengths = torch.from_numpy(batch.patch_lengths).cuda()
mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()
if args.model.encoder_enable_byte_ngrams and batch.ngram_ids is None:
raise ValueError(
"Cannot enable byte ngrams and have batch.ngram_ids be None"
)
ngram_ids = (
None
if batch.ngram_ids is None
else torch.from_numpy(batch.ngram_ids).cuda()
)
if every_n_steps(train_state, args.gc_collect_freq, acc_step=0):
logger.info("garbage collection")
# we do garbage collection manually otherwise different processes
# run the GC at different times so they slow down the whole pipeline
gc.collect()
data_load_time = round(timer() - data_load_start, 4)
nwords_since_last_log += batch_x.numel()
bsz, seqlen = batch_y.shape
# forward
start_timer = torch.cuda.Event(enable_timing=True)
end_timer = torch.cuda.Event(enable_timing=True)
start_timer.record()
# This is an automatic probe that will compute statistics
# of all linears' inputs, weights and outputs
# along with attention logits and entropy
# both in forward and backward pass
tok_loss = None
if (args.probe_freq is not None) and every_n_steps(
train_state, args.probe_freq, acc_step=1 % args.grad_acc_steps
):
# Here we do a fake forward and backward pass on a smaller
# batch size to avoid OOM
# This assumes the model has no stateful layers (batch norm..)
assert (
next(probe_mod.parameters()).grad is None
), "Can't probe model if grads are not reset"
with probe:
probe.metadata = {
"it": train_state.step,
"global_step": train_state.step,
"loop": "lingua",
}
# Non compiled model uses roughly 2x memory in our exps
# So we divide bsz by 2 or seqlen by 2
probe_bsz = max(1, bsz // 2)
probe_seq = seqlen if (bsz // 2 >= 1) else (seqlen // 2)
probe_loss = probe_mod(
batch_x[:probe_bsz, :probe_seq],
batch_y[:probe_bsz, :probe_seq],
)
probe_loss.backward()
# We zero grads to cancel this fake step
optimizer.zero_grad()
assert (
next(probe_mod.parameters()).grad is None
), "Probe model shouldn't have grads at this point"
pred = model(
batch_x, patch_lengths=batch_patch_lengths, ngram_ids=ngram_ids
)
loss, _ = compute_loss(pred, batch_y, mask, train_state.scale)
# We scale loss with grad_acc_steps so the gradient is the same
# regardless of grad_acc_steps
loss = loss / args.grad_acc_steps
# backward on scaled loss to create scaled gradients
loss.backward()
# For logging we undo that scaling
loss = loss.detach() * args.grad_acc_steps
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm=args.optim.clip, foreach=True
)
grad_norm = (
grad_norm.full_tensor() if isinstance(grad_norm, DTensor) else grad_norm
).item()
# optimizer step
if train_state.acc_step == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
train_state.step += 1
# updates the scale for next iteration
# training iteration complete
end_timer.record()
torch.cuda.synchronize()
curr_iter_time = round(start_timer.elapsed_time(end_timer) * 1e-3, 4)
# if profiler is active
if torch_profiler:
xformers.profiler.step()
# log metrics
if every_n_steps(
train_state,
args.logging.freq,
acc_step=None if args.logging.acc_freq else 0,
acc_freq=args.logging.acc_freq,
):
time_delta = timer() - time_last_log
wps = nwords_since_last_log / (time_delta * args.distributed.tp_size)
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
total_acc_steps = (
args.grad_acc_steps * train_state.step + train_state.acc_step
)
tokens_per_gpu = (
total_acc_steps * args.data.batch_size * args.data.seq_len
)
total_tokens = dp_degree * tokens_per_gpu
# This is an estimate and the correct values may change
# if you change the architecture
# Use xformer's analyze profile trace to get actual measurement
FLOPS = (
get_num_flop_per_token(
model_param_count - args.model.vocab_size * args.model.dim,
args.model.n_layers,
args.model.dim,
args.data.seq_len,
)
* wps
)
metrics = flatten_dict(
{
"global_step": train_state.step,
"acc_step": train_state.acc_step,
"speed": {
"wps": wps,
"FLOPS": FLOPS,
"curr_iter_time": curr_iter_time,
"data_load_time": data_load_time,
},
"optim": {
"grad_norm": grad_norm,
"lr": curr_lr,
"total_tokens": total_tokens,
},
"memory": gpu_mem_stats._asdict(),
},
sep="/",
)
to_sync = {}
to_sync["loss/out"] = loss.item()
metrics.update(dist_mean_dict(to_sync))
if get_is_master():
metric_logger.log(metrics)
gpu_memory_monitor.reset_peak_stats()
nwords_since_last_log = 0
time_last_log = timer()
logger.info(
f"step: {train_state.step}"
f" acc: {train_state.acc_step}"
f" loss: {round(loss.item(),4):>7}"
f" grad: {grad_norm:.2e}"
f" flops: {FLOPS:.2e}"
f" wps: {wps:.2e}"
f" iter: {curr_iter_time:>7}"
f" data: {data_load_time:>5}"
f" lr: {curr_lr:.2e}"
f" mem: {gpu_mem_stats.max_active_pct:.0f}%"
f" pow: {gpu_mem_stats.power_draw/1000} W"
)
saved = False
if every_n_steps(
train_state, args.checkpoint.dump.every, acc_step=0
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
saved = checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
if args.eval is not None and every_n_steps(
train_state, args.checkpoint.eval.every, acc_step=0
):
from apps.main.eval import EVAL_FOLDER_NAME, EvalArgs, launch_eval
eval_args = dataclass_from_dict(EvalArgs, args.eval)
eval_args.global_step = train_state.step
eval_args.ckpt_dir = str(checkpoint.existing_saves[-1])
eval_args.dump_dir = str(
os.path.join(
args.dump_dir,
"evals",
EVAL_FOLDER_NAME.format(train_state.step),
)
)
eval_args.metric_log_dir = args.dump_dir
if args.async_eval_gpus is None:
launch_eval(eval_args)
elif get_is_master():
if wandb.run is not None and args.logging.wandb is not None:
eval_args.wandb = deepcopy(args.logging.wandb)
assert args.async_eval_gpus > 0
logger.info(f"Launching evals on {args.async_eval_gpus} gpus")
with clean_env():
launch_job(
StoolArgs(
asdict(eval_args),
script="apps.main.eval",
copy_code=False,
nodes=args.async_eval_gpus // 8,
qos="lowest",
)
)
if preemption_flag["flag"]:
if not saved:
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
requeue_slurm_job()
sys.exit(0)
if not saved:
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
gc.collect()
def main():
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
model: LMTransformerArgsgs
@dataclass
class LMTransformerArgsgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgsgs
or just name=tictac for top level attributes.
The behavior here is as follows:
1. We instantiate TrainArgs with its default values
2. We override those default values with the ones in the provided config file
3. We override the result with the additional arguments provided through command line
For example, if the config is the following
model:
dim: 128
n_layers: 4
and you call train.py with train.py model.dim=64
Then the final TrainArgs will have
model:
dim: 64
n_layers: 4
Plus all the default values in TrainArgs dataclass.
"""
cli_args = OmegaConf.from_cli()
file_cfg = OmegaConf.load(cli_args.config)
# We remove 'config' attribute from config as the underlying DataClass does not have it
del cli_args.config
default_cfg = OmegaConf.create(TrainArgs().model_dump())
cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
cfg = OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
train_args = TrainArgs.model_validate(cfg)
if train_args.debug_dynamo:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
train(train_args)
if __name__ == "__main__":
main()