mirror of
https://github.com/facebookresearch/blt.git
synced 2025-01-18 08:27:45 +00:00
6ffeb66b53
Summary: - Refactor local model configs to be separate and clearer - Add attention arguments and correct which attention is used in local models - Preparation for being able to have an entropy train script - Fix failing unit tests Test Plan:
59 lines
2 KiB
Python
59 lines
2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
import os
|
|
|
|
import torch
|
|
|
|
from bytelatent.constants import BLT_DATA
|
|
from bytelatent.data.iterators.arrow_iterator import ArrowFileIteratorState
|
|
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
|
|
from bytelatent.data.patcher import PatcherArgs, PatchingModeEnum, entropy
|
|
from bytelatent.entropy_model import load_entropy_model
|
|
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
|
|
|
|
ENTROPY_MODEL = "transformer_100m"
|
|
ARROW_TEST_DATA = str(BLT_DATA / "stackexchange.chunk.00.jsonl.shard_00.arrow")
|
|
|
|
|
|
def test_entropy_model():
|
|
initial_state = ArrowFileIteratorState(
|
|
file_path=None,
|
|
num_workers=1,
|
|
worker_id=0,
|
|
preprocess_dir=None,
|
|
entropy_model_name=ENTROPY_MODEL,
|
|
dataset_files=[ARROW_TEST_DATA],
|
|
row_num=0,
|
|
arrow_batch_size=100,
|
|
s3_profile=None,
|
|
)
|
|
arrow_file = initial_state.build()
|
|
tokenizer_args = TokenizerArgs(
|
|
name="blt",
|
|
init_kwargs={
|
|
"bpe_tokenizer_path": BLT_DATA / "tokenizer_final_32k.minus_inf_ws.model"
|
|
},
|
|
)
|
|
entropy_model = load_entropy_model(
|
|
BLT_DATA / "checkpoint_0100000_consolidated",
|
|
os.path.join(
|
|
BLT_DATA,
|
|
"entropy_model.pth",
|
|
),
|
|
).cuda()
|
|
preprocess_iter = PreprocessIterator(
|
|
arrow_file,
|
|
tokenizer_args=tokenizer_args,
|
|
patcher_args=PatcherArgs(patching_mode=PatchingModeEnum.entropy),
|
|
add_patches=False,
|
|
)
|
|
for example in preprocess_iter.create_iter():
|
|
tokens = torch.tensor(example.tokens).unsqueeze(0)
|
|
expected_entropies = torch.tensor(example.entropies).unsqueeze(0)
|
|
preds = entropy_model(tokens.cuda())
|
|
pred_entropies = entropy(preds)
|
|
assert pred_entropies.shape == expected_entropies.shape
|
|
assert torch.allclose(
|
|
pred_entropies.cpu(), expected_entropies, rtol=1.0, atol=3.5
|
|
)
|
|
break
|