blt/bytelatent/stool.py
2024-12-12 15:32:30 -08:00

238 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import os
import shutil
import subprocess
from dataclasses import dataclass
from typing import Any, Dict
from omegaconf import OmegaConf
@dataclass
class StoolArgs:
config: Any = None
launcher: str = "sbatch" # Can be sbatch or bash if already in salloc
script: str = "apps.main.train" # The script to run.
copy_code: bool = True # Wether to copy code to dump dir
dirs_exists_ok: bool = (
False # Wether to copy new code and config and run regardless that dir exists
)
override: bool = False # Wether to delete dump dir and restart
nodes: int = -1 # The number of nodes to run the job on.
ngpu: int = 8 # The number of GPUs required per node.
ncpu: int = 16 # The number of CPUs allocated per GPU.
mem: str = "" # The amount of memory to allocate.
anaconda: str = "default" # The path to the anaconda environment.
constraint: str = "" # The constraint on the nodes.
exclude: str = "" # The nodes to exclude.
time: int = -1 # The time limit of the job (in minutes).
account: str = ""
qos: str = ""
partition: str = "learn"
stdout: bool = False
SBATCH_COMMAND = """#!/bin/bash
{exclude}
{qos}
{account}
{constraint}
#SBATCH --job-name={name}
#SBATCH --nodes={nodes}
#SBATCH --gres=gpu:{ngpus}
#SBATCH --cpus-per-gpu={ncpu}
#SBATCH --time={time}
#SBATCH --partition={partition}
#SBATCH --mem={mem}
#SBATCH --output={dump_dir}/logs/%j/%j.stdout
#SBATCH --error={dump_dir}/logs/%j/%j.stderr
#SBATCH --open-mode=append
#SBATCH --signal=USR2@120
#SBATCH --distribution=block
# Mimic the effect of "conda init", which doesn't work for scripts
eval "$({conda_exe} shell.bash hook)"
source activate {conda_env_path}
{go_to_code_dir}
export OMP_NUM_THREADS=1
export LAUNCH_WITH="SBATCH"
export DUMP_DIR={dump_dir}
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml
"""
def copy_dir(input_dir: str, output_dir: str) -> None:
print(f"Copying : {input_dir}\n" f"to : {output_dir} ...")
assert os.path.isdir(input_dir), f"{input_dir} is not a directory"
assert os.path.isdir(output_dir), f"{output_dir} is not a directory"
rsync_cmd = (
f"rsync -arm --copy-links "
f"--include '**/' "
f"--include '*.py' "
f"--exclude='*' "
f"{input_dir}/ {output_dir}"
)
print(f"Copying command: {rsync_cmd}")
subprocess.call([rsync_cmd], shell=True)
print("Copy done.")
def retrieve_max_time_per_partition() -> Dict[str, int]:
# retrieve partition max times (a bit slow)
sinfo = json.loads(subprocess.check_output("sinfo --json", shell=True))["sinfo"]
max_times: Dict[str, int] = {}
for info in sinfo:
if info["partition"]["maximums"]["time"]["infinite"]:
max_times[info["partition"]["name"]] = 14 * 24 * 60 # 14 days
else:
max_times[info["partition"]["name"]] = info["partition"]["maximums"][
"time"
][
"number"
] # in minutes
return max_times
def validate_args(args) -> None:
# Set maximum time limit if not specified
if args.time == -1:
max_times = retrieve_max_time_per_partition()
args.time = max_times.get(
args.partition, 3 * 24 * 60
) # Default to 3 days if not found
print(
f"No time limit specified, using max time for partitions: {args.time} minutes"
)
if args.constraint:
args.constraint = f"#SBATCH --constraint={args.constraint}"
if args.account:
args.account = f"#SBATCH --account={args.account}"
if args.qos:
args.qos = f"#SBATCH --qos={args.qos}"
if getattr(args, "exclude", ""):
args.exclude = f"#SBATCH --exclude={args.exclude}"
if hasattr(args, "anaconda") and args.anaconda:
if args.anaconda == "default":
args.anaconda = (
subprocess.check_output("which python", shell=True)
.decode("ascii")
.strip()
)
else:
args.anaconda = f"{args.anaconda}/bin/python"
assert os.path.isfile(args.anaconda)
args.mem = args.mem or "0"
assert args.partition
assert args.ngpu > 0
assert args.ncpu > 0
assert args.nodes > 0
assert args.time > 0
assert args.partition
def launch_job(args: StoolArgs):
# Set up args default and validate them depending on the cluster or partition requested
validate_args(args)
dump_dir = args.config["dump_dir"]
job_name = args.config["name"]
print("Creating directories...")
os.makedirs(dump_dir, exist_ok=args.dirs_exists_ok or args.override)
if args.override:
confirm = input(
f"Are you sure you want to delete the directory '{dump_dir}'? This action cannot be undone. (yes/no): "
)
if confirm.lower() == "yes":
shutil.rmtree(dump_dir)
print(f"Directory '{dump_dir}' has been deleted.")
else:
print("Operation cancelled.")
return
if args.copy_code:
os.makedirs(f"{dump_dir}/code", exist_ok=args.dirs_exists_ok)
print("Copying code ...")
copy_dir(os.getcwd(), f"{dump_dir}/code")
print("Saving config file ...")
with open(f"{dump_dir}/base_config.yaml", "w") as cfg:
cfg.write(OmegaConf.to_yaml(args.config))
conda_exe = os.environ.get("CONDA_EXE", "conda")
conda_env_path = os.path.dirname(os.path.dirname(args.anaconda))
log_output = (
"-o $DUMP_DIR/logs/%j/%j_%t.out -e $DUMP_DIR/logs/%j/%j_%t.err"
if not args.stdout
else ""
)
sbatch = SBATCH_COMMAND.format(
name=job_name,
script=args.script,
dump_dir=dump_dir,
nodes=args.nodes,
tasks=args.nodes * args.ngpu,
nodes_per_run=args.nodes,
ngpus=args.ngpu,
ncpu=args.ncpu,
mem=args.mem,
qos=args.qos,
account=args.account,
constraint=args.constraint,
exclude=args.exclude,
time=args.time,
partition=args.partition,
conda_exe=conda_exe,
conda_env_path=conda_env_path,
log_output=log_output,
go_to_code_dir=f"cd {dump_dir}/code/" if args.copy_code else "",
)
print("Writing sbatch command ...")
with open(f"{dump_dir}/submit.slurm", "w") as f:
f.write(sbatch)
print("Submitting job ...")
os.system(f"{args.launcher} {dump_dir}/submit.slurm")
print("Done.")
if __name__ == "__main__":
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
mode: LMTransformerArgs
@dataclass
class LMTransformerArgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgs
or just name=tictac for top level attributes.
"""
raise NotImplementedError("Update this to blt code")
args = OmegaConf.from_cli()
args.config = OmegaConf.load(args.config)
args = dataclass_from_dict(StoolArgs, args)
launch_job(args)