blt/bytelatent/hf.py
Pedro Rodriguez bbc205c2b7
Some checks failed
Lint with Black / lint (push) Has been cancelled
Lint with isort / lint (push) Has been cancelled
Improve HF compatibility (#99)
Summary:

Test Plan:
2025-05-01 11:44:50 -07:00

199 lines
7 KiB
Python

import json
import os
import shutil
from pathlib import Path
from typing import Dict, Optional, Union
import torch
import typer
from huggingface_hub import hf_hub_download
from huggingface_hub.hub_mixin import ModelHubMixin
from bytelatent.args import TrainArgs
from bytelatent.data.patcher import PatcherArgs, to_device
from bytelatent.distributed import DistributedArgs, setup_torch_distributed
from bytelatent.entropy_model import load_entropy_model
from bytelatent.generate import load_consolidated_model_and_tokenizer
from bytelatent.generate_blt import generate_nocache
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformer
app = typer.Typer()
class BltTokenizerAndPatcher(ModelHubMixin):
def __init__(
self,
*,
patcher_args: PatcherArgs,
tokenizer_args: TokenizerArgs,
distributed_args: DistributedArgs,
):
self.patcher_args = patcher_args
self.tokenizer_args = tokenizer_args
self.distributed_args = distributed_args
def push_to_hub(self, *args, **kwargs):
raise ValueError(
"For meta authors: Do not push BLT weights with this, save weights with save_pretrained() then push them manually to HF hub to ensure the repository metadata is correct."
)
def save_pretrained(self, *args, **kwargs):
raise ValueError(
"Tokenizer and Patcher are saved by BLT, this class is just for loading"
)
def _save_pretrained(self, *args, **kwargs):
raise ValueError(
"Tokenizer and Patcher are saved by BLT, this class is just for loading"
)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: Optional[bool],
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
):
if os.path.isdir(model_id):
train_args_file = os.path.join(model_id, "train_args.json")
else:
train_args_file = hf_hub_download(
repo_id=model_id,
filename="train_args.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
)
with open(train_args_file) as f:
train_args = TrainArgs(**json.load(f))
return cls(
patcher_args=train_args.data.patcher_args,
tokenizer_args=train_args.data.tokenizer_args,
distributed_args=train_args.distributed,
)
@app.command()
def convert_to_transformers(blt_weights_dir: str, output_dir: str):
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(blt_weights_dir)
blt_dir = os.path.join(output_dir, "blt")
entropy_dir = os.path.join(output_dir, "entropy")
model.save_pretrained(blt_dir, config={"args": train_cfg.model.model_dump()})
shutil.copyfile(
os.path.join(blt_weights_dir, "params.json"),
os.path.join(blt_dir, "train_args.json"),
)
blt_readme_file = os.path.join(blt_dir, "README.md")
if os.path.exists(blt_readme_file):
os.remove(blt_readme_file)
patcher_args = train_cfg.data.patcher_args.model_copy(deep=True)
patcher_args.realtime_patching = False
print("Loading entropy model and patcher")
patcher_args.entropy_model_checkpoint_dir = os.path.join(
blt_weights_dir, "entropy_model"
)
state_path = os.path.join(
patcher_args.entropy_model_checkpoint_dir, "consolidated.pth"
)
entropy_model, entropy_model_args = load_entropy_model(
patcher_args.entropy_model_checkpoint_dir, state_path
)
entropy_model.save_pretrained(
entropy_dir, config={"args": entropy_model_args.model_dump()}
)
entropy_readme_file = os.path.join(entropy_dir, "README.md")
if os.path.exists(entropy_readme_file):
os.remove(entropy_readme_file)
@app.command()
def load_transformers(
source: str,
entropy_repo: str = "facebook/blt-entropy",
blt_repo: str = "facebook/blt-1b",
entropy_dir: str | None = None,
blt_dir: str | None = None,
prompt: str | None = None,
):
if source == "local":
assert entropy_dir is not None
assert blt_dir is not None
entropy_model = LMTransformer.from_pretrained(
entropy_dir, local_files_only=True
)
blt_model = ByteLatentTransformer.from_pretrained(
blt_dir, local_files_only=True
)
tok_and_patcher = BltTokenizerAndPatcher.from_pretrained(
blt_dir, local_files_only=True
)
tokenizer = tok_and_patcher.tokenizer_args.build()
patcher = tok_and_patcher.patcher_args.build()
print("Loaded all local")
print(entropy_model)
print(blt_model)
print(tok_and_patcher)
elif source == "hub":
entropy_model = LMTransformer.from_pretrained(entropy_repo)
blt_model = ByteLatentTransformer.from_pretrained(blt_repo)
tok_and_patcher = BltTokenizerAndPatcher.from_pretrained(blt_repo)
tokenizer = tok_and_patcher.tokenizer_args.build()
patcher = tok_and_patcher.patcher_args.build()
print("Loaded all remote")
print(entropy_model)
print(blt_model)
print(tok_and_patcher)
else:
raise ValueError(f"Unknown source: {source}")
if prompt is not None:
assert isinstance(tokenizer, BltTokenizer)
# Move args to correct GPU
param_dtype = dict(fp32=torch.float32, fp16=torch.float16, bf16=torch.bfloat16)[
tok_and_patcher.distributed_args.model_dtype
]
blt_model = blt_model.cuda().eval()
for param in blt_model.parameters():
param.data = param.data.to(dtype=param_dtype)
# Enable realtime patching
patcher.realtime_patching = True
patcher.entropy_model, _ = to_device(
entropy_model, tok_and_patcher.patcher_args.patching_device
)
# Setup distributed
distributed_args = DistributedArgs()
distributed_args.configure_world()
if not torch.distributed.is_initialized():
setup_torch_distributed(distributed_args)
prompts = [prompt]
outputs = generate_nocache(
prompts, model=blt_model, tokenizer=tokenizer, patcher=patcher
)
text_outputs = [tokenizer.decode(t) for t in outputs]
for p, t in zip(prompts, text_outputs):
print(f'Prompt: "{p}"\nCompletion: "{t}"')
print()
if __name__ == "__main__":
app()