blt/bytelatent/metrics.py
2024-12-12 15:32:30 -08:00

233 lines
6.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import json
import logging
from collections import namedtuple
from dataclasses import asdict
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Union
import torch
import torch.nn as nn
import wandb
from pydantic import BaseModel, ConfigDict
from bytelatent.distributed import get_is_master
logger = logging.getLogger()
class WandbArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
job_type: str | None = None
dir: str | None = None
project: str | None = None
entity: str | None = None
tags: list | None = None
group: str | None = None
name: str | None = None
notes: str | None = None
config_exclude_keys: list[str] | None = None
config_include_keys: list[str] | None = None
anonymous: str | None = None
mode: str | None = None
allow_val_change: bool | None = None
resume: Union[bool, str] | None = None
force: bool | None = None
tensorboard: bool | None = None
sync_tensorboard: bool | None = None
monitor_gym: bool | None = None
save_code: bool | None = None
id: str | None = None
fork_from: str | None = None
resume_from: str | None = None
class LoggingArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
freq: int = 10 # Log every freq optimizer steps
acc_freq: int | None = None # Log every acc_freq gradient accumulation steps
wandb: WandbArgs | None = None
class MetricLogger:
def __init__(self, outdir: Path, args: Any | None = None):
self.outdir = outdir
self.jsonl_writer = None
self.args = args
def open(self):
if self.jsonl_writer is None:
self.jsonl_writer = open(self.outdir, "a")
if (
self.args is not None
and self.args.logging.wandb is not None
and get_is_master()
):
run = wandb.init(
config=asdict(self.args),
**asdict(self.args.logging.wandb),
)
def log(self, metrics: dict[str, Any]):
if (
self.args is not None
and self.args.logging.wandb is not None
and (wandb.run is not None)
):
wandb.log(metrics, step=metrics["global_step"])
metrics.update({"created_at": datetime.now(timezone.utc).isoformat()})
print(json.dumps(metrics), file=self.jsonl_writer, flush=True)
def close(self):
if self.jsonl_writer is not None:
self.jsonl_writer.close()
self.jsonl_writer = None
def __enter__(self):
self.open()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def __del__(self):
self.close()
GPUMemStats = namedtuple(
"GPUMemStats",
[
"max_active_gib",
"max_active_pct",
"max_reserved_gib",
"max_reserved_pct",
"num_alloc_retries",
"num_ooms",
"power_draw",
],
)
class GPUMemoryMonitor:
"""
Class to monitor GPU memory usage
"""
def __init__(self, device: str = "cuda:0"):
self.device = torch.device(device) # device object
self.device_name = torch.cuda.get_device_name(self.device)
self.device_index = torch.cuda.current_device()
self.device_capacity = torch.cuda.get_device_properties(
self.device
).total_memory
self.device_capacity_gib = self._to_gib(self.device_capacity)
# reset stats, clear cache
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
def _to_gib(self, memory_in_bytes):
# NOTE: GiB (gibibyte) is 1024, vs GB is 1000
_gib_in_bytes = 1024 * 1024 * 1024
memory_in_gib = memory_in_bytes / _gib_in_bytes
return memory_in_gib
def _to_pct(self, memory):
return 100 * memory / self.device_capacity
def get_peak_stats(self):
cuda_info = torch.cuda.memory_stats(self.device)
max_active = cuda_info["active_bytes.all.peak"]
max_active_gib = self._to_gib(max_active)
max_active_pct = self._to_pct(max_active)
max_reserved = cuda_info["reserved_bytes.all.peak"]
max_reserved_gib = self._to_gib(max_reserved)
max_reserved_pct = self._to_pct(max_reserved)
num_retries = cuda_info["num_alloc_retries"]
num_ooms = cuda_info["num_ooms"]
power_draw = torch.cuda.power_draw()
if num_retries > 0:
logger.warning(f"{num_retries} CUDA memory allocation retries.")
if num_ooms > 0:
logger.warning(f"{num_ooms} CUDA OOM errors thrown.")
return GPUMemStats(
max_active_gib,
max_active_pct,
max_reserved_gib,
max_reserved_pct,
num_retries,
num_ooms,
power_draw,
)
def reset_peak_stats(self):
torch.cuda.reset_peak_memory_stats()
torch.cuda.reset_accumulated_memory_stats()
def __str__(self):
mem_stats = self.get_peak_stats()
display_str = f"{self.device_name} ({self.device_index}): {self.device_capacity_gib} GiB capacity, "
display_str += (
f"{mem_stats.max_reserved_gib} GiB peak, {mem_stats.max_reserved_pct}% peak"
)
return f"{display_str}"
def upload_train_to_wandb(
ckpt_dir, project="lingua", entity="codegen-team", train=True, eval=True
):
import json
from pathlib import Path
import wandb
from omegaconf import OmegaConf
cfg = OmegaConf.load(Path(ckpt_dir) / "config.yaml")
cfg = OmegaConf.to_container(cfg)
if train:
wandb.init(config=cfg, name=cfg["name"], project=project, entity=entity)
with open(Path(ckpt_dir) / "metrics.jsonl") as f:
for l in f:
m = json.loads(l)
wandb.log(m, step=m["global_step"])
wandb.finish()
if eval:
wandb.init(config=cfg, name=cfg["name"], project=project, entity=entity)
with open(Path(ckpt_dir) / "metrics.eval.jsonl") as f:
for l in f:
m = json.loads(l)
wandb.log(
{
f"evals/{name.replace('/','.')}": value
for name, value in m.items()
if "/" in name
},
step=m["global_step"],
)
wandb.finish()
def get_num_params(model: nn.Module) -> int:
"""
Get the total model params
Args : only_trainable: whether to only count trainable params
"""
numel = {n: p.numel() for n, p in model.named_parameters()}
return sum(numel.values())