mirror of
https://github.com/facebookresearch/blt.git
synced 2025-02-23 05:22:16 +00:00
Summary: Currently, arrow iterator can only read arrow files. However, the pyarrow library can read other formats, including jsonlines. This allows the same ArrowIterator to read from jsonlines, so we can read from the original source data, and simply omit the entropy column when doing so Test Plan: Run train script until dataloader starts
238 lines
7.2 KiB
Python
238 lines
7.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
from typing import Any, Dict
|
|
|
|
from omegaconf import OmegaConf
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class StoolArgs(BaseModel):
|
|
name: str = None
|
|
dump_dir: str = None
|
|
config: Any = None
|
|
launcher: str = "sbatch" # Can be sbatch or bash if already in salloc
|
|
script: str = "apps.main.train" # The script to run.
|
|
copy_code: bool = True # Wether to copy code to dump dir
|
|
dirs_exists_ok: bool = (
|
|
False # Wether to copy new code and config and run regardless that dir exists
|
|
)
|
|
override: bool = False # Wether to delete dump dir and restart
|
|
nodes: int = -1 # The number of nodes to run the job on.
|
|
ngpu: int = 8 # The number of GPUs required per node.
|
|
ncpu: int = 16 # The number of CPUs allocated per GPU.
|
|
mem: str = "" # The amount of memory to allocate.
|
|
anaconda: str = "default" # The path to the anaconda environment.
|
|
constraint: str = "" # The constraint on the nodes.
|
|
exclude: str = "" # The nodes to exclude.
|
|
time: int = -1 # The time limit of the job (in minutes).
|
|
account: str = ""
|
|
qos: str = ""
|
|
partition: str = "learn"
|
|
stdout: bool = False
|
|
|
|
|
|
SBATCH_COMMAND = """#!/bin/bash
|
|
|
|
{exclude}
|
|
{qos}
|
|
{account}
|
|
{constraint}
|
|
#SBATCH --job-name={name}
|
|
#SBATCH --nodes={nodes}
|
|
#SBATCH --gres=gpu:{ngpus}
|
|
#SBATCH --cpus-per-gpu={ncpu}
|
|
#SBATCH --time={time}
|
|
#SBATCH --partition={partition}
|
|
#SBATCH --mem={mem}
|
|
|
|
#SBATCH --output={dump_dir}/logs/%j/%j.stdout
|
|
#SBATCH --error={dump_dir}/logs/%j/%j.stderr
|
|
|
|
#SBATCH --open-mode=append
|
|
#SBATCH --signal=USR2@120
|
|
#SBATCH --distribution=block
|
|
|
|
# Mimic the effect of "conda init", which doesn't work for scripts
|
|
eval "$({conda_exe} shell.bash hook)"
|
|
source activate {conda_env_path}
|
|
|
|
{go_to_code_dir}
|
|
|
|
export OMP_NUM_THREADS=1
|
|
export LAUNCH_WITH="SBATCH"
|
|
export DUMP_DIR={dump_dir}
|
|
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml dump_dir=$DUMP_DIR name={name}
|
|
"""
|
|
|
|
|
|
def copy_dir(input_dir: str, output_dir: str) -> None:
|
|
print(f"Copying : {input_dir}\n" f"to : {output_dir} ...")
|
|
assert os.path.isdir(input_dir), f"{input_dir} is not a directory"
|
|
assert os.path.isdir(output_dir), f"{output_dir} is not a directory"
|
|
rsync_cmd = (
|
|
f"rsync -arm --copy-links "
|
|
f"--include '**/' "
|
|
f"--include '*.py' "
|
|
f"--exclude='*' "
|
|
f"{input_dir}/ {output_dir}"
|
|
)
|
|
print(f"Copying command: {rsync_cmd}")
|
|
subprocess.call([rsync_cmd], shell=True)
|
|
print("Copy done.")
|
|
|
|
|
|
def retrieve_max_time_per_partition() -> Dict[str, int]:
|
|
# retrieve partition max times (a bit slow)
|
|
|
|
sinfo = json.loads(subprocess.check_output("sinfo --json", shell=True))["sinfo"]
|
|
max_times: Dict[str, int] = {}
|
|
|
|
for info in sinfo:
|
|
if info["partition"]["maximums"]["time"]["infinite"]:
|
|
max_times[info["partition"]["name"]] = 14 * 24 * 60 # 14 days
|
|
else:
|
|
max_times[info["partition"]["name"]] = info["partition"]["maximums"][
|
|
"time"
|
|
][
|
|
"number"
|
|
] # in minutes
|
|
|
|
return max_times
|
|
|
|
|
|
def validate_args(args) -> None:
|
|
# Set maximum time limit if not specified
|
|
if args.time == -1:
|
|
max_times = retrieve_max_time_per_partition()
|
|
args.time = max_times.get(
|
|
args.partition, 3 * 24 * 60
|
|
) # Default to 3 days if not found
|
|
print(
|
|
f"No time limit specified, using max time for partitions: {args.time} minutes"
|
|
)
|
|
|
|
if args.constraint:
|
|
args.constraint = f"#SBATCH --constraint={args.constraint}"
|
|
|
|
if args.account:
|
|
args.account = f"#SBATCH --account={args.account}"
|
|
|
|
if args.qos:
|
|
args.qos = f"#SBATCH --qos={args.qos}"
|
|
|
|
if getattr(args, "exclude", ""):
|
|
args.exclude = f"#SBATCH --exclude={args.exclude}"
|
|
|
|
if hasattr(args, "anaconda") and args.anaconda:
|
|
if args.anaconda == "default":
|
|
args.anaconda = (
|
|
subprocess.check_output("which python", shell=True)
|
|
.decode("ascii")
|
|
.strip()
|
|
)
|
|
else:
|
|
args.anaconda = f"{args.anaconda}/bin/python"
|
|
assert os.path.isfile(args.anaconda)
|
|
|
|
args.mem = args.mem or "0"
|
|
|
|
assert args.partition
|
|
assert args.ngpu > 0
|
|
assert args.ncpu > 0
|
|
assert args.nodes > 0
|
|
assert args.time > 0
|
|
assert args.partition
|
|
|
|
|
|
def launch_job(args: StoolArgs):
|
|
# Set up args default and validate them depending on the cluster or partition requested
|
|
validate_args(args)
|
|
job_name = args.name or args.config["name"]
|
|
dump_dir = os.path.join(args.dump_dir, job_name) or args.config["dump_dir"]
|
|
print("Creating directories...")
|
|
os.makedirs(dump_dir, exist_ok=args.dirs_exists_ok or args.override)
|
|
if args.override:
|
|
confirm = input(
|
|
f"Are you sure you want to delete the directory '{dump_dir}'? This action cannot be undone. (yes/no): "
|
|
)
|
|
if confirm.lower() == "yes":
|
|
shutil.rmtree(dump_dir)
|
|
print(f"Directory '{dump_dir}' has been deleted.")
|
|
else:
|
|
print("Operation cancelled.")
|
|
return
|
|
if args.copy_code:
|
|
os.makedirs(f"{dump_dir}/code", exist_ok=args.dirs_exists_ok)
|
|
print("Copying code ...")
|
|
copy_dir(os.getcwd(), f"{dump_dir}/code")
|
|
|
|
print("Saving config file ...")
|
|
with open(f"{dump_dir}/base_config.yaml", "w") as cfg:
|
|
cfg.write(OmegaConf.to_yaml(args.config))
|
|
|
|
conda_exe = os.environ.get("CONDA_EXE", "conda")
|
|
conda_env_path = os.path.dirname(os.path.dirname(args.anaconda))
|
|
log_output = (
|
|
"-o $DUMP_DIR/logs/%j/%j_%t.out -e $DUMP_DIR/logs/%j/%j_%t.err"
|
|
if not args.stdout
|
|
else ""
|
|
)
|
|
sbatch = SBATCH_COMMAND.format(
|
|
name=job_name,
|
|
script=args.script,
|
|
dump_dir=dump_dir,
|
|
nodes=args.nodes,
|
|
tasks=args.nodes * args.ngpu,
|
|
nodes_per_run=args.nodes,
|
|
ngpus=args.ngpu,
|
|
ncpu=args.ncpu,
|
|
mem=args.mem,
|
|
qos=args.qos,
|
|
account=args.account,
|
|
constraint=args.constraint,
|
|
exclude=args.exclude,
|
|
time=args.time,
|
|
partition=args.partition,
|
|
conda_exe=conda_exe,
|
|
conda_env_path=conda_env_path,
|
|
log_output=log_output,
|
|
go_to_code_dir=f"cd {dump_dir}/code/" if args.copy_code else "",
|
|
)
|
|
|
|
print("Writing sbatch command ...")
|
|
with open(f"{dump_dir}/submit.slurm", "w") as f:
|
|
f.write(sbatch)
|
|
|
|
print("Submitting job ...")
|
|
os.system(f"{args.launcher} {dump_dir}/submit.slurm")
|
|
|
|
print("Done.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
|
|
This accepts arguments as a dot list
|
|
So if the dataclass looks like
|
|
|
|
@dataclass
|
|
class DummyArgs:
|
|
name: str
|
|
mode: LMTransformerArgs
|
|
|
|
@dataclass
|
|
class LMTransformerArgs:
|
|
dim: int
|
|
|
|
Then you can pass model.dim=32 to change values in LMTransformerArgs
|
|
or just name=tictac for top level attributes.
|
|
"""
|
|
args = OmegaConf.from_cli()
|
|
args.config = OmegaConf.load(args.config)
|
|
args = StoolArgs.model_validate(args)
|
|
launch_job(args)
|