blt/bytelatent/data/iterators/arrow_iterator.py
Pedro Rodriguez 936d9437be
Some checks are pending
Lint with Black / lint (push) Waiting to run
Lint with isort / lint (push) Waiting to run
Allow ArrowIterator to read from json (#45)
Summary:

Currently, arrow iterator can only read arrow files. However, the pyarrow library can read
other formats, including jsonlines. This allows the same ArrowIterator to read from jsonlines,
so we can read from the original source data, and simply omit the entropy column when doing so

Test Plan:

Run train script until dataloader starts
2025-02-06 09:57:22 -08:00

291 lines
12 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
import os
import re
from logging import getLogger
from typing import Any, Generator
import fsspec
import pyarrow as pa
# pyarrow needs the initialization from this import
import pyarrow.dataset # pyright: ignore
import s3fs
from pydantic import BaseModel, ConfigDict
from bytelatent import ByteLatentError
from bytelatent.data.data_types import BltExample
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.abstract_iterator import IteratorState, StatefulIterator
from bytelatent.preprocess.preprocess_entropies import get_id_key, get_text
logger = getLogger(__name__)
class ArrowFileIteratorState(BaseModel, IteratorState):
model_config = ConfigDict(extra="forbid")
file_path: str | None
row_num: int
num_workers: int
worker_id: int
preprocess_dir: str | None
dataset_files: list[str] | None
entropy_model_name: str | None
arrow_batch_size: int = 100
s3_profile: str | None
filesystem_type: str | None = None
file_format: str
def build(self) -> "ArrowFileIterator":
arrow_file = ArrowFileIterator(
file_path=self.file_path,
worker_id=self.worker_id,
num_workers=self.num_workers,
preprocess_dir=self.preprocess_dir,
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
dataset_files=self.dataset_files,
s3_profile=self.s3_profile,
filesystem_type=self.filesystem_type,
file_format=self.file_format,
)
if self.row_num != 0:
arrow_file._set_row_num(self.row_num)
return arrow_file
def shard_sort_key(file: str):
assert isinstance(file, str)
match = re.search(r".+\.shard_([0-9]+)\.arrow", file)
shard_number = int(match.group(1))
return shard_number
class ArrowFileIterator(StatefulIterator):
def __init__(
self,
*,
file_path: str | None,
worker_id: int,
num_workers: int,
preprocess_dir: str | None,
entropy_model_name: str | None,
arrow_batch_size: int,
dataset_files: list[str] | None = None,
s3_profile: str | None = None,
filesystem_type: str | None = None,
file_format: str = "arrow",
):
assert 0 <= worker_id < num_workers, (worker_id, num_workers)
if file_path is None and dataset_files is None:
raise ByteLatentError("file_path and dataset_files cannot both be None")
self.row_num = 0
self.iter_id = 0
self.batch_iterator = None
self.batch_to_consume = None
self.dataset = None
self.file_path = file_path
self.worker_id = worker_id
self.num_workers = num_workers
self.preprocess_dir = preprocess_dir
self.entropy_model_name = entropy_model_name
self.arrow_batch_size = arrow_batch_size
self.s3_profile = s3_profile
self.filesystem_type = filesystem_type
self.file_format = file_format
self.fs = None
if self.filesystem_type is not None:
if self.filesystem_type == "file":
self.fs = fsspec.filesystem("file")
elif self.filesystem_type == "s3":
self.fs = fsspec.filesystem("s3", profile=s3_profile)
else:
raise ValueError("Unknown filesystem")
logger.info("Arrow iterator using fs=%s", self.fs)
if dataset_files is None:
# Prepare arrow shards
jsonl_file = file_path
parts = re.match(
r"(.+)\.chunk\.[0-9]+\.jsonl", os.path.basename(jsonl_file)
)
assert parts is not None
dataset = parts.group(1)
data_dir = os.path.join(preprocess_dir, dataset, entropy_model_name)
data_dir_with_glob = os.path.join(
data_dir, f"{os.path.basename(jsonl_file)}.shard_*.arrow"
)
if self.fs is None:
self.fs = get_fs(data_dir_with_glob, s3_profile=s3_profile)
if isinstance(self.fs, s3fs.S3FileSystem):
self.filesystem_type = "s3"
else:
self.filesystem_type = "file"
shard_files = self.fs.glob(data_dir_with_glob)
for s in shard_files:
complete_file = os.path.join(
data_dir, f"{os.path.basename(s)}.complete"
)
if not self.fs.exists(complete_file):
raise ValueError(f"Missing .complete for input file: {s}")
shard_files = sorted(shard_files, key=shard_sort_key)
if len(shard_files) == 0:
raise ByteLatentError(
f"Zero shard_files found corresponding to: {file_path} using preprocess_dir={preprocess_dir} and entropy_model_name={entropy_model_name}, so the search path is data_dir={data_dir} for matches to {jsonl_file.name}.shard_*.arrow"
)
self.dataset_files = [f for f in shard_files]
else:
self.preprocess_dir = None
self.dataset_files = dataset_files
if dataset_files[0].startswith("s3://"):
for f in dataset_files:
assert f.startswith("s3://")
if self.fs is None:
self.fs = get_fs(dataset_files[0], s3_profile=s3_profile)
if isinstance(self.fs, s3fs.S3FileSystem):
self.filesystem_type = "s3"
else:
self.filesystem_type = "file"
def get_state(self) -> ArrowFileIteratorState:
return ArrowFileIteratorState(
file_path=self.file_path,
row_num=self.row_num,
worker_id=self.worker_id,
num_workers=self.num_workers,
preprocess_dir=self.preprocess_dir,
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
dataset_files=self.dataset_files,
s3_profile=self.s3_profile,
filesystem_type=self.filesystem_type,
file_format=self.file_format,
)
def create_iter(
self,
) -> Generator[BltExample, Any, None]:
if self.dataset is None:
if isinstance(self.fs, s3fs.core.S3FileSystem):
filesystem = self.fs
else:
filesystem = None
self.dataset = pa.dataset.dataset(
self.dataset_files, format=self.file_format, filesystem=filesystem
)
self.batch_iterator = self.dataset.to_batches(
batch_size=self.arrow_batch_size
)
self.iter_id += 1
if self.batch_to_consume is not None:
batch_columns: dict[str, list] = self.batch_to_consume
self.batch_to_consume = None
if self.file_format == "arrow":
sample_ids = batch_columns["sample_id"]
texts = batch_columns["text"]
entropies = batch_columns["entropies"]
elif self.file_format == "json":
# This data hasn't been preprocessed to a uniform format,
# so we have to do it now and omit entropies
sample_ids = batch_columns[get_id_key(batch_columns)]
texts = get_text(batch_columns)
entropies = None
else:
raise ValueError(f"Unknown file format: {self.file_format}")
for i in range(len(sample_ids)):
out = BltExample(
sample_id=sample_ids[i],
entropies=entropies[i] if entropies is not None else None,
text=texts[i],
tokens=None,
mask=None,
patch_lengths=None,
)
self.row_num += 1
if (self.row_num - 1) % self.num_workers == self.worker_id:
yield out
for batch in self.batch_iterator:
batch_columns = batch.to_pydict()
if self.file_format == "arrow":
sample_ids = batch_columns["sample_id"]
texts = batch_columns["text"]
entropies = batch_columns["entropies"]
elif self.file_format == "json":
# This data hasn't been preprocessed to a uniform format,
# so we have to do it now and omit entropies
sample_ids = batch_columns[get_id_key(batch_columns)]
texts = get_text(batch_columns)
entropies = None
else:
raise ValueError(f"Unknown file format: {self.file_format}")
for i in range(len(sample_ids)):
out = BltExample(
sample_id=sample_ids[i],
entropies=entropies[i] if entropies is not None else None,
text=texts[i],
tokens=None,
mask=None,
patch_lengths=None,
)
self.row_num += 1
if (self.row_num - 1) % self.num_workers == self.worker_id:
yield out
def _set_row_num(self, target_row_num: int):
logger.info(
f"Setting arrow position to {target_row_num} for {self.dataset_files}"
)
if target_row_num is None or target_row_num == 0:
self.row_num = 0
self.dataset = None
self.batch_iterator = None
self.batch_to_consume = None
else:
if isinstance(self.fs, s3fs.core.S3FileSystem):
filesystem = self.fs
else:
filesystem = None
self.dataset = pa.dataset.dataset(
self.dataset_files, format="arrow", filesystem=filesystem
)
self.batch_iterator = self.dataset.to_batches(
batch_size=self.arrow_batch_size
)
curr_remaining = target_row_num
for batch in self.batch_iterator:
if len(batch) > curr_remaining:
batch_columns: dict[str, list] = batch.to_pydict()
if self.file_format == "arrow":
leftover_sample_ids = batch_columns["sample_id"][
curr_remaining:
]
leftover_entropies = batch_columns["entropies"][curr_remaining:]
leftover_texts = batch_columns["text"][curr_remaining:]
elif self.file_format == "json":
leftover_sample_ids = batch_columns[get_id_key(batch_columns)][
curr_remaining:
]
leftover_entropies = None
leftover_texts = get_text(batch_columns)[curr_remaining:]
else:
raise ValueError(f"Unknown file format: {self.file_format}")
batch_columns["sample_id"] = leftover_sample_ids
batch_columns["entropies"] = leftover_entropies
batch_columns["text"] = leftover_texts
self.batch_to_consume = batch_columns
break
elif len(batch) == curr_remaining:
# We are exactly at the end of the batch,
# so the next batch is the right spot
break
else:
curr_remaining -= len(batch)
self.row_num = target_row_num
logger.info(
f"Finished setting arrow position to {target_row_num} for {self.dataset_files}"
)