# Copyright (c) Meta Platforms, Inc. and affiliates. import atexit import contextlib import logging import multiprocessing as mp import os import random import shutil import signal import socket import subprocess import sys import tempfile from functools import lru_cache, partial, reduce from itertools import chain from typing import List, Optional, Tuple, Union import torch # for no recompute ops import xformers.ops from pydantic import BaseModel, ConfigDict from torch import distributed as dist from torch.distributed import ReduceOp from torch.distributed._composable.fsdp import MixedPrecisionPolicy, fully_shard from torch.distributed._tensor import DTensor from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( checkpoint_wrapper, ) from torch.distributed.device_mesh import DeviceMesh, init_device_mesh from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.checkpoint import ( CheckpointPolicy, create_selective_checkpoint_contexts, ) from bytelatent.float8 import convert_linears_to_fp8 logger = logging.getLogger() # for selective AC default_no_recompute_ops = { torch.ops.aten.mm.default, torch.ops.aten._scaled_mm.default, torch.ops.aten._scaled_dot_product_efficient_attention.default, torch.ops.aten._scaled_dot_product_flash_attention.default, torch.ops.c10d_functional.reduce_scatter_tensor.default, torch.ops.xformers_flash.flash_fwd.default, } if int(os.environ.get("BLT_ALLOW_MISSING_FLEX_ATTENTION", False)) == 0: default_no_recompute_ops.add( torch.ops.xformers.efficient_attention_forward_cutlass.default ) class DistributedArgs(BaseModel): model_config = ConfigDict(extra="forbid") dp_shard: int = ( 1 # In how many shard to split the model weight. Typically number gpu in a node. ) dp_replicate: int = ( 1 # How many times to replicate the model weight. Typically number of nodes. ) tp_size: int = 1 selective_activation_checkpointing: bool = False compile: bool = False fsdp_type: str = "no_shard" model_dtype: str = "bf16" float8_recipe: str | None = None float8_filter: str = r"layers\.[0-9]+\." matmul_allow_tf32: bool = False allow_bf16_reduced_precision_reduction: bool = True detect_anomaly: bool = False compile_cache_size_limit: int = 8 spawn_method: str = "forkserver" class EnvironmentArgs(BaseModel): model_config = ConfigDict(extra="forbid") # Use GNU openMP (GOMP) instead of Intel OpenMP [Intel Math Kernel Library (MKL)] MKL_SERVICE_FORCE_INTEL: str = "GNU" OMP_NUM_THREADS: str = "1" MKL_NUM_THREADS: str = "1" # faster intra-node collectives, seems to be a cluster specific flag ENABLE_INTRA_NODE_COMM: str = "1" # avoids OOMs with long context TORCH_NCCL_AVOID_RECORD_STREAMS: str = "1" # increasing NCCL timeout time before having some NCCL error 22 should give a 16s timeout NCCL_IB_TIMEOUT: str = "22" NCCL_DEBUG: str = "INFO" TORCH_NCCL_ASYNC_ERROR_HANDLING: str = "1" def get_device_mesh(distributed_args: DistributedArgs): tp_size = distributed_args.tp_size dp_replicate = distributed_args.dp_replicate dp_shard = distributed_args.dp_shard assert ( dp_replicate * dp_shard * tp_size == get_world_size() ), f"dp_replicate * dp_shard * tp_size ({dp_replicate} * {dp_shard} * {tp_size}) != world_size ({get_world_size()})" dims = [] names = [] if dp_replicate >= 1: dims.append(dp_replicate) names.append("dp_replicate") if dp_shard > 1 or distributed_args.fsdp_type == "no_shard": dims.append(dp_shard) names.append("dp_shard") if tp_size > 1: dims.append(tp_size) names.append("tp") dims = tuple(dims) names = tuple(names) return init_device_mesh("cuda", mesh_shape=dims, mesh_dim_names=names) def dist_max(x: Union[int, float], mesh: DeviceMesh = None): tensor = torch.tensor(x).cuda() dist.all_reduce(tensor, op=ReduceOp.MAX, group=mesh.get_group() if mesh else None) return tensor def dist_mean(x: Union[int, float], mesh: DeviceMesh = None): tensor = torch.tensor(x).cuda() dist.all_reduce(tensor, op=ReduceOp.AVG, group=mesh.get_group() if mesh else None) return tensor def dist_mean_dict(x): r = dict() for k in x: r[k] = dist_mean(x[k]) r[k] = r[k].item() if (r[k].dim() == 0) else r[k].tolist() return r @lru_cache() def get_is_torch_run() -> bool: return os.environ.get("LOCAL_RANK") is not None @lru_cache() def get_is_slurm_job() -> bool: return "SLURM_JOB_ID" in os.environ and not get_is_torch_run() @lru_cache() def get_global_rank() -> int: if get_is_torch_run(): return int(os.environ["RANK"]) elif get_is_slurm_job(): return int(os.environ["SLURM_PROCID"]) else: return 0 @lru_cache() def get_local_rank() -> int: if get_is_torch_run(): return int(os.environ["LOCAL_RANK"]) elif get_is_slurm_job(): return int(os.environ["SLURM_LOCALID"]) else: return 0 @lru_cache() def get_world_size() -> int: if get_is_torch_run(): return int(os.environ["WORLD_SIZE"]) elif get_is_slurm_job(): return int(os.environ["SLURM_NTASKS"]) else: return 1 @lru_cache() def get_is_master() -> bool: return get_global_rank() == 0 @lru_cache() def get_master_port(job_id: int) -> int: if get_is_torch_run(): return int(os.environ["MASTER_PORT"]) else: MIN_MASTER_PORT, MAX_MASTER_PORT = (20000, 60000) rng = random.Random(job_id) return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT) @lru_cache() def get_master_addr() -> str: if get_is_torch_run(): return os.environ["MASTER_ADDR"] elif get_is_slurm_job(): hostnames = subprocess.check_output( ["scontrol", "show", "hostnames", os.environ["SLURM_JOB_NODELIST"]] ) return hostnames.split()[0].decode("utf-8") else: return "127.0.0.1" def setup_env(env_args: EnvironmentArgs): env_vars = env_args.model_dump() # When using Triton, it attempts to locate prebuilt kernels in a cache # located at ~/.triton/cache, but when that's backed by NFS this can fail # with a "OSError: [Errno 116] Stale file handle" error. If we were to set # it to a local directory it would belong to the first user who created it # and it would fail for the job of any other successive user assigned to # that machine. To avoid all this mess we use a temporary per-process cache. triton_cache_dir = tempfile.mkdtemp() atexit.register(shutil.rmtree, triton_cache_dir, ignore_errors=True) env_vars["TRITON_CACHE_DIR"] = triton_cache_dir # We change the tmp dir to /scratch in case it's slurm job # This avoids filling up the host's usually limited tmpfs # A full tmpfs leads to very slow creation of processes and weird bugs if get_is_slurm_job(): new_tmp = f"/scratch/slurm_tmpdir/{os.environ['SLURM_JOB_ID']}" if os.path.exists(new_tmp): env_vars["TMP_DIR"] = new_tmp for name, value in env_vars.items(): if os.environ.get(name) != str(value): os.environ[name] = str(value) logger.warning(f"WARNING: Setting {name} to {value}") def setup_torch_distributed(dist_args): """ Handle single and multi-GPU / multi-node / SLURM jobs. Initialize the following variables: - global_rank - world_size """ mp.set_start_method(dist_args.spawn_method) with mp.Manager(): pass local_rank = get_local_rank() os.environ["RANK"] = str(get_global_rank()) os.environ["WORLD_SIZE"] = str(get_world_size()) os.environ["MASTER_ADDR"] = get_master_addr() os.environ["MASTER_PORT"] = str( get_master_port(job_id=int(os.environ.get("SLURM_JOB_ID", -1))) ) if get_is_torch_run(): logger.info(f"Run launched with torchrun, local rank: {local_rank}") elif get_is_slurm_job(): logger.info(f"Run launched with slurm, local rank: {local_rank}") else: logger.info("Single GPU job") logger.info(f"ENV: {os.environ}") # set GPU device assert 0 <= local_rank < 8 if dist_args.matmul_allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True logger.warning( f"WARNING: Setting torch.backends.matmul.allow_tf32 to True. This is faster but less accurate." ) torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = ( dist_args.allow_bf16_reduced_precision_reduction ) if torch.cuda.device_count() > 1: torch.cuda.set_device(local_rank) torch.distributed.init_process_group(init_method="env://", backend="nccl") torch.autograd.set_detect_anomaly(dist_args.detect_anomaly) def get_module(module, access_string): names = access_string.split(sep=".") return reduce(getattr, names, module) def set_module(module, access_string, value): names = access_string.split(sep=".") parent = reduce(getattr, names[:-1], module) setattr(parent, names[-1], value) def default_fsdp_grouping_plan(n_layers: int) -> List[Tuple[str, bool]]: return [(f"layers.{i}", i < n_layers - 1) for i in range(n_layers)] def get_default_policy(no_recompute_ops=None): no_recompute_ops = no_recompute_ops or default_no_recompute_ops def default_policy(ctx, func, *args, **kwargs): return ( CheckpointPolicy.MUST_SAVE if func in no_recompute_ops else CheckpointPolicy.PREFER_RECOMPUTE ) return default_policy @torch.no_grad() def check_model_value_range( model: torch.nn.Module, range: float = 1e3, std: float = 1e3 ): for name, param in chain(model.named_parameters(), model.named_buffers()): if isinstance(param, DTensor): param = param.to_local() if param.numel() == 0: logger.warning( f"Model parameter {name} is empty, probably because of FSDP sharding" ) continue if torch.isnan(param).any() or torch.isinf(param).any(): logger.warning(f"Model parameter {name} contains NaN or Inf") param_range = param.max() - param.min() param_std = param.std() if param_range > range: logger.warning( f"Model parameter {name} has a suspiciously large range ({param_range}): please check initialization and init_weights is defined and called" ) if param_std > std: logger.warning( f"Model parameter {name} has a suspiciously large standard deviation ({param_std}): please check initialization and init_weights is defined and called" ) if (param == 0).all(): logger.warning( f"Model parameter {name} is all zeros: it might be because of a missing initialization" ) def init_signal_handler(callable): """ Handle signals sent by SLURM for time limit / pre-emption. """ signal.signal(signal.SIGUSR2, callable) logger.warning("Signal handler installed.") def requeue_slurm_job(): prod_id = int(os.environ["SLURM_PROCID"]) logger.warning("Host: %s - Global rank: %i" % (socket.gethostname(), prod_id)) if prod_id == 0 and os.environ.get("LAUNCH_WITH", "") != "DORA": logger.warning("Requeuing job " + os.environ["SLURM_JOB_ID"]) os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"]) else: logger.warning("Not the master process, no need to requeue.") sys.exit(0) @contextlib.contextmanager def clean_env(): distrib_names = ( "MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE", "LOCAL_RANK", "LOCAL_WORLD_SIZE", "TORCHELASTIC_RUN_ID", "DORA_FORCE_DISTRIB", ) cluster_env = { x: os.environ.pop(x) for x in os.environ if x.startswith( ("SLURM_", "SLURMD_", "SRUN_", "SBATCH_", "SUBMITIT_", "WANDB_") ) or x in distrib_names } try: yield finally: os.environ.update(cluster_env) def parallelize_model( model, device_mesh, model_args, distributed_args: DistributedArgs, fsdp_grouping_plan: Optional[List[Tuple[str, bool]]] = None, tp_parallelize=None, no_recompute_ops=None, ): if distributed_args.tp_size > 1: assert ( distributed_args.fsdp_type == "full_shard" ), "Only full shard is supported for TP parallelism" assert tp_parallelize is not None, "TP plan is required for TP parallelism" assert ( distributed_args.compile == False ), "Compile is not supported for TP parallelism" tp_parallelize(model, device_mesh["tp"], model_args, distributed_args) if distributed_args.float8_recipe is not None: if distributed_args.tp_size > 1: raise RuntimeError("float8 is incompatible with tensor-parallelism for now") model = convert_linears_to_fp8( model, distributed_args.float8_recipe, distributed_args.float8_filter ) param_dtype = dict(fp32=torch.float32, fp16=torch.float16, bf16=torch.bfloat16)[ distributed_args.model_dtype ] if ( distributed_args.fsdp_type == "full_shard" or distributed_args.fsdp_type == "no_shard" ): if distributed_args.fsdp_type == "no_shard": assert ( distributed_args.dp_shard == 1 ), "dp_shard must be 1 for no_shard fsdp_type" assert ( device_mesh["dp_shard"].size() == 1 ), "dp_shard must be 1 for no_shard fsdp_type" fsdp_config = dict( mp_policy=( MixedPrecisionPolicy( param_dtype=param_dtype, reduce_dtype=torch.float32, ) ), mesh=( device_mesh["dp_replicate", "dp_shard"] if distributed_args.dp_shard > 1 or distributed_args.fsdp_type == "no_shard" else device_mesh["dp_replicate"] ), ) if fsdp_grouping_plan is None: # Assume that the model has list of layers and group around it fsdp_grouping_plan = default_fsdp_grouping_plan(len(model.layers)) for path, reshard_after_forward in fsdp_grouping_plan: module = get_module(model, path) set_module( model, path, fully_shard( module, **fsdp_config, reshard_after_forward=reshard_after_forward ), ) model = fully_shard(model, **fsdp_config, reshard_after_forward=True) else: raise ValueError(f"Invalid fsdp_type: {distributed_args.fsdp_type}") if distributed_args.selective_activation_checkpointing: model = checkpoint_wrapper( model, context_fn=partial( create_selective_checkpoint_contexts, get_default_policy(no_recompute_ops), ), ) if distributed_args.compile: torch._dynamo.config.cache_size_limit = ( distributed_args.compile_cache_size_limit ) model = torch.compile(model) return model