# Copyright (c) Meta Platforms, Inc. and affiliates. # This file from the xFormers repo is just a example of how to implement # probing of the activations of a model, without changing anything. # By default, the linear inputs/outputs/gradients are logged, as well as # the attention logits+entropy. It is possible to log an additional tensor, eg: # x = log_stats(x, "name") # # Known limitations: # * Only a subset of the attention biases is supported # * Torch-compile is disabled automatically when this is enabled # * Only tested with bf16/f16/f32 datatypes import contextlib import functools import json import math import os import uuid from collections import defaultdict from enum import Enum from pathlib import Path from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, checkpoint_wrapper, ) from torch.fx.operator_schemas import normalize_function from torch.nn.attention import SDPBackend, sdpa_kernel from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_map from torch.utils.module_tracker import ModuleTracker from xformers.ops import fmha @torch.library.custom_op("torchprobe::log", mutates_args=(), device_types=None) def _log(x: torch.Tensor, name: str, uid: str) -> None: pass @_log.register_fake def _log_fake(x: torch.Tensor, name: str, uid: str) -> None: pass class _LogStats(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor, name: str): uid = str(uuid.uuid4()) torch.ops.torchprobe.log(x, name, uid) ctx.name = name ctx.uid = uid return x @staticmethod def backward(ctx, grad: torch.Tensor): torch.ops.torchprobe.log(grad, f"{ctx.name}.g", ctx.uid) return grad, None _PROBING_ENABLED = False def log_stats(x: torch.Tensor, name: str) -> torch.Tensor: if not _PROBING_ENABLED: return x return _LogStats.apply(x, name) QUANTILES = [ 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999, ] @functools.cache def _get_quantiles(device: torch.device, dtype) -> torch.Tensor: return torch.tensor(QUANTILES, device=device, dtype=dtype) def _get_stats(x_: torch.Tensor, remove_inf=False) -> Dict[str, Any]: if x_.dtype not in [torch.float, torch.double, torch.float16, torch.bfloat16]: return {} x = x_.flatten() if remove_inf: x = x[x.abs() < float("inf")] if x.dtype is not torch.double: x = x.float() xabs = x.abs() quantiles = _get_quantiles(x.device, x.dtype) mean = x.mean() std = x.std() return { "shape": tuple(x_.shape), "mean": mean, "std": std, "skew": (((x - mean) / std) ** 3).double().mean(), "kurtosis": (((x - mean) / std) ** 4).double().mean(), "abs.mean": xabs.mean(), "max": x.max(), "min": x.min(), # Note: `quantile` takes at most 2**24 elements, see # https://github.com/pytorch/pytorch/issues/64947 "quantiles": torch.quantile(x[: 2**24], quantiles), } def _mask_attn_causal_inplace(logits: torch.Tensor, q_idx, q_len, kv_len) -> None: assert logits.ndim == 4 logits[:, :, :, q_idx + kv_len - q_len + 1 :] = -math.inf def _mask_attn_logits( logits: torch.Tensor, q_idx: List[int], *, causal: bool, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k: Optional[torch.Tensor] = None, ) -> torch.Tensor: assert logits.dtype is torch.float32 # Handle BlockDiagonalMask if cu_seqlens_q is not None: assert cu_seqlens_k is not None # Expect BHMqMkv assert logits.ndim == 4, logits.shape qs = cu_seqlens_q.tolist() ks = cu_seqlens_k.tolist() q_batchid = [] k_batchid = [-2] * logits.shape[-1] q_idx_i = 0 for bid, (q0, q1, k0, k1) in enumerate(zip(qs, qs[1:], ks, ks[1:])): for k in range(k0, k1): k_batchid[k] = bid while q_idx_i < len(q_idx) and q_idx[q_idx_i] < q1: q_batchid.append(bid) if causal: _mask_attn_causal_inplace( logits[:, :, q_idx_i : q_idx_i + 1, k0:k1], q_idx[q_idx_i] - q0, q1 - q0, k1 - k0, ) q_idx_i += 1 mask_out = ( torch.tensor(q_batchid, device=logits.device)[None, None, :, None] != torch.tensor(k_batchid, device=logits.device)[None, None, None, :] ) logits[mask_out.expand_as(logits)] = -math.inf assert q_idx_i == len(q_idx) elif causal: for q_idx_i in range(len(q_idx)): _mask_attn_causal_inplace( logits[:, :, q_idx_i : q_idx_i + 1, :], q_idx[q_idx_i], logits.shape[2], logits.shape[3], ) return logits def _attn_queries_subset(num_queries: int) -> List[int]: return list(range(0, num_queries, max(1, num_queries // 128))) @torch.no_grad() def _compute_attn_stats_sdpa( probe, path: str, # supports arguments both cudnn + flash backends query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask=None, attn_bias=None, dropout_p=0.0, is_causal=False, scale=None, compute_log_sumexp=True, return_debug_mask=False, **kwargs, ): if scale is None: scale = 1 / (query.shape[-1] ** 0.5) # Filter-out not supported cases if attn_mask is not None or attn_bias is not None or dropout_p != 0.0 or kwargs: probe.store[f"{path}::attn"] = { "query.shape": tuple(query.shape), "key.shape": tuple(key.shape), "value.shape": tuple(value.shape), "attn_mask": attn_mask.shape if attn_mask is not None else None, "dropout_p": dropout_p, "is_causal": is_causal, "scale": scale, "unk_kwargs": list(kwargs.keys()), } return # Take a subset of the queries and compute the logits query_s = _attn_queries_subset(query.shape[-2]) logits = query[:, :, query_s] @ key.transpose(-1, -2) * scale logits = _mask_attn_logits(logits.float(), query_s, causal=is_causal) p = logits.float().softmax(-1) masked_logsoft = logits.log_softmax(-1).where( (logits > -math.inf), torch.zeros_like(logits) ) entropy = -(p * masked_logsoft).sum(-1) probe.log_tensor(f"{path}::attn_entropy", entropy) probe.log_tensor(f"{path}::attn_logits", logits, remove_inf=True) @torch.no_grad() def _compute_attn_stats_flash( probe, path: str, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, cu_seqlens_q: Optional[torch.Tensor], cu_seqlens_k: Optional[torch.Tensor], seqused_k: Optional[torch.Tensor], max_seqlen_q: int, max_seqlen_k: int, p: float, softmax_scale: float, is_causal: bool, window_left: int, window_right: int, return_softmax: bool, block_tables: Optional[torch.Tensor], unpadded_lse: bool = False, ) -> None: # Filter-out not supported cases if ( seqused_k is not None or p != 0.0 or window_left >= 0 or window_right >= 0 or block_tables is not None ): probe.store[f"{path}::attn"] = { "query.shape": tuple(query.shape), "key.shape": tuple(key.shape), "value.shape": tuple(value.shape), "op": "flash", } return if cu_seqlens_q is not None: assert query.ndim == 3, query.shape query, key, value = query[None], key[None], value[None] assert query.ndim == 4, query.shape # Take a subset of the queries and compute the logits query_s = _attn_queries_subset(query.shape[1]) logits = ( query[:, query_s].transpose(1, 2) @ key.transpose(1, 2).transpose(-1, -2) * softmax_scale ) logits = _mask_attn_logits( logits.float(), query_s, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, causal=is_causal, ) p = logits.float().softmax(-1) masked_logsoft = logits.log_softmax(-1).where( (logits > -math.inf), torch.zeros_like(logits) ) entropy = -(p * masked_logsoft).sum(-1) probe.log_tensor(f"{path}::attn_entropy", entropy) probe.log_tensor(f"{path}::attn_logits", logits, remove_inf=True) def _tensors_to_python(x): if not isinstance(x, torch.Tensor): return x return x.tolist() # class syntax class LinearBwType(Enum): DW = 1 DX = 2 UNKNOWN = 3 class AutoProbeD(TorchDispatchMode): def __init__(self, module: nn.Module, write_file: Optional[str] = None) -> None: self.write_file = Path(write_file) if write_file is not None else None self.write_tensors_tmpdir: Optional[Path] = None self.compile_disabler = TorchCompileDisabler(module) self.mod_tracker = ModuleTracker() self.count_per_path: Dict[str, int] = defaultdict(int) self.store: Dict[str, Dict[str, Any]] = {} self.linear_data: Dict[str, Tuple[Any, Any, Any, Any, Any]] = {} self.uid_to_path: Dict[str, str] = {} self.metadata: Any = None self.enabled = False self.verbose = bool(int(os.environ.get("PROBE_VERBOSE", "0"))) def __enter__(self): global _PROBING_ENABLED assert not self.enabled, "Entered probe twice" self.compile_disabler.__enter__() self.mod_tracker.__enter__() super().__enter__() self.enabled = True _PROBING_ENABLED = True # self._setup_tensors_logging() return self def __exit__(self, *args) -> None: global _PROBING_ENABLED assert self.enabled, "Exiting probe without entering it" super().__exit__(*args) self.mod_tracker.__exit__(*args) self.compile_disabler.__exit__(*args) self._flush_and_clear() _PROBING_ENABLED = False self.enabled = False def _setup_tensors_logging(self): if self.write_file is not None: self.write_file.parent.mkdir(exist_ok=True) self.write_tensors_tmpdir = ( self.write_file.parent / f"{self.write_file.name}-tmp-{str(uuid.uuid4())[:8]}" ) self.write_tensors_tmpdir.mkdir(exist_ok=True) def _flush_and_clear(self) -> None: if self.write_file is not None: dump_data = tree_map(_tensors_to_python, self.store) with self.write_file.open("a") as fd: json.dump( { "data": dump_data, "meta": self.metadata, "version": 2, "quantiles": QUANTILES, }, fd, ) fd.write("\n") if self.write_tensors_tmpdir is not None: assert self.write_file is not None dump_dir = self.write_tensors_tmpdir.parent / f"{self.write_file.name}-dump" dump_dir.mkdir(exist_ok=True) dir_name = "" if "it" in self.metadata: dir_name = f"it{int(self.metadata['it']):010}" if dir_name == "" or (dump_dir / dir_name).exists(): num_files = len(list(dump_dir.glob(f"{dir_name}v*"))) dir_name = f"{dir_name}v{num_files}" dump_dir = dump_dir / dir_name assert not dump_dir.exists() self.write_tensors_tmpdir.rename(dump_dir) self.write_tensors_tmpdir = None self.store.clear() self.count_per_path.clear() self.uid_to_path.clear() def _find_bw_path_and_type( self, path: str, out: torch.Tensor, args ) -> Tuple[str, LinearBwType]: """ We are in the BW pass, and process a GEMM. Let's figure out: (1) The path for the FW pass (might differ in case of ModuleTracker bug) (2) The type of BW pass (eg `dw` or `dx`) """ def _is_path_correct_dw(path: str) -> bool: # dW.t = dY.t @ X in_shape, w_shape, out_shape, input_sm, weight_sm = self.linear_data[path] return out.shape == (w_shape[1], w_shape[0]) and torch.allclose( input_sm, args[1][:4, :4] ) def _is_path_correct_dx(path: str) -> bool: # dX = dY @ W.t in_shape, w_shape, out_shape, input_sm, weight_sm = self.linear_data[path] return out.shape == in_shape and torch.allclose(weight_sm, args[1][:4, :4]) if path in self.linear_data: if _is_path_correct_dw(path): return path, LinearBwType.DW if _is_path_correct_dx(path): return path, LinearBwType.DX for candidate_path in self.mod_tracker.parents: if candidate_path not in self.linear_data: continue if _is_path_correct_dw(candidate_path): return candidate_path, LinearBwType.DW if _is_path_correct_dx(candidate_path): return candidate_path, LinearBwType.DX return path, LinearBwType.UNKNOWN def log_tensor(self, name: str, x: torch.Tensor, **kwargs) -> None: self.store[name] = _get_stats(x, **kwargs) if self.write_tensors_tmpdir is not None: name_safe = name.replace("::", "__").replace("/", "") torch.save(x, self.write_tensors_tmpdir / f"{name_safe}.pkl") def __torch_dispatch__(self, func, types, args=(), kwargs=None): kwargs = kwargs if kwargs else {} path = None # Find longest path for p in self.mod_tracker.parents: if p == "Global": continue if path is None or len(p) > len(path): path = p if path is None: path = "Global" path = path.replace("._checkpoint_wrapped_module", "") out = func(*args, **kwargs) # Handle linear layers if func._overloadpacket in [torch.ops.aten.addmm, torch.ops.aten.mm]: weight: torch.Tensor input: torch.Tensor if not self.mod_tracker.is_bw: # (technically, weight is transposed) if func._overloadpacket == torch.ops.aten.addmm: _bias, input, weight = args[:3] else: assert func._overloadpacket == torch.ops.aten.mm input, weight = args[:2] self.log_tensor(f"{path}::in", input) self.log_tensor(f"{path}::w", weight) self.log_tensor(f"{path}::out", out) self.linear_data[path] = ( input.shape, weight.shape, out.shape, input[:4, :4].clone(), weight[:4, :4].T.clone(), ) elif func._overloadpacket == torch.ops.aten.mm: # XXX: Try to find the actual path for the linear layer # This is messed with with Francisco's FSDP sometimes new_path, bwtype = self._find_bw_path_and_type(path, out, args) if new_path != path: if self.verbose: print(f"E: Fixing path `{path}` -> `{new_path}") path = new_path if bwtype == LinearBwType.DW: # dW.t = dY.t @ X self.log_tensor(f"{path}::w.g", out) elif bwtype == LinearBwType.DX: # dX = dY @ W.t self.log_tensor(f"{path}::in.g", out) self.log_tensor(f"{path}::out.g", args[0]) elif func._overloadpacket in [ torch.ops.aten._scaled_dot_product_flash_attention, torch.ops.aten._scaled_dot_product_cudnn_attention, ]: _, kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) _compute_attn_stats_sdpa(self, path, **kwargs) elif func._overloadpacket == fmha.flash.FwOp.OPERATOR: _, kwargs = normalize_function( func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True ) _compute_attn_stats_flash(self, path, **kwargs) elif func._overloadpacket == torch.ops.torchprobe.log: uid = args[2] path = self.uid_to_path.setdefault(uid, path) self.log_tensor(f"{path}::{args[1]}", args[0]) if self.verbose: print(f"{'[BW]' if self.mod_tracker.is_bw else '[FW]'} `{path}`: {func}") return out def _find_all_submodules_compiled(out: List[nn.Module], module: nn.Module) -> None: if module._compiled_call_impl is not None: out.append(module) for c in module.children(): _find_all_submodules_compiled(out, module=c) class TorchCompileDisabler: def __init__(self, module: nn.Module) -> None: self.module = module self.submodules_compiled: List[nn.Module] = [] self.compiled_call_impl: List[Any] = [] self.disable_compile = torch.compiler.disable() torch._dynamo.config.raise_on_ctx_manager_usage = False # type: ignore def __enter__(self) -> None: # Remove all `_compiled_call_impl` attributes to effectively # "undo" compilation self.submodules_compiled.clear() _find_all_submodules_compiled(self.submodules_compiled, self.module) self.compiled_call_impl = [ m._compiled_call_impl for m in self.submodules_compiled ] for m in self.submodules_compiled: m._compiled_call_impl = None self.disable_compile.__enter__() # type: ignore def __exit__(self, *args) -> None: self.disable_compile.__exit__(*args) # type: ignore for m, c_impl in zip(self.submodules_compiled, self.compiled_call_impl): m._compiled_call_impl = c_impl self.compiled_call_impl = [] Probe = AutoProbeD # EXAMPLE USAGE d = 512 seqlen = 4 bs = 2 class Attention1(nn.Module): def forward(self, x): attn_bias = fmha.attn_bias.LowerTriangularFromBottomRightMask() return fmha.memory_efficient_attention(x, x, x, attn_bias=attn_bias).reshape( [x.shape[0], seqlen, -1] ) class Attention2(nn.Module): def forward(self, x): attn_bias = fmha.attn_bias.BlockDiagonalMask.from_seqlens( [seqlen] * bs ).make_causal() xr = x.reshape([1, 2 * seqlen, x.shape[2], x.shape[3]]) return fmha.memory_efficient_attention(xr, xr, xr, attn_bias=attn_bias).reshape( [x.shape[0], seqlen, -1] ) class AttentionSDPA(nn.Module): def __init__(self): super().__init__() self.wo = nn.Linear(d, d) def forward(self, x): x = x.transpose(1, 2) return self.wo( F.scaled_dot_product_attention(x, x, x) .transpose(1, 2) .reshape([x.shape[0], seqlen, -1]) ) class AttentionSDPAFlash(AttentionSDPA): def forward(self, x): x = x.transpose(1, 2) with sdpa_kernel(SDPBackend.FLASH_ATTENTION): return self.wo( F.scaled_dot_product_attention(x, x, x) .transpose(1, 2) .reshape([x.shape[0], seqlen, -1]) ) class Model(nn.Module): def __init__(self) -> None: super().__init__() self.head = nn.Linear(d, 16) self.trunk = nn.Sequential( nn.Linear(d, d), nn.Linear(d, d), ) self.q_proj = nn.Linear(d, d, bias=False) self.trunk.compile() self.attn1 = Attention1() self.attn2 = Attention2() self.attnSDPA = AttentionSDPA() self.attnSDPAflash = AttentionSDPAFlash() def forward(self, x): B, nHeads, D = x.shape[0], d // 64, 64 x = self.q_proj(x).reshape([B, seqlen, nHeads, D]) x = self.attn1(x) + self.attn2(x) + self.attnSDPA(x) + self.attnSDPAflash(x) x = log_stats(x, "attns_out") return self.head(self.trunk(x)) def test_masking() -> None: q_seqlen = [1, 1, 14, 12] kv_seqlen = [2, 2, 14, 18] attn_bias = fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens( q_seqlen, kv_seqlen ).make_causal_from_bottomright() logits = torch.randn( [1, 1, sum(q_seqlen), sum(kv_seqlen)], dtype=torch.float32, device="cuda" ) bias = attn_bias.materialize(logits.shape, dtype=logits.dtype, device=logits.device) logits_masked = logits.clone() _mask_attn_logits( logits_masked, list(range(logits.shape[2])), causal=True, cu_seqlens_q=attn_bias.q_seqinfo.seqstart, cu_seqlens_k=attn_bias.k_seqinfo.seqstart, ) assert (logits + bias == logits_masked).all().item() def test_toy_model() -> None: # Test masking kw = dict(device="cuda", dtype=torch.float16) x = torch.randn([bs, seqlen, d], **kw) m = Model() m.head = checkpoint_wrapper( m.head, checkpoint_impl=CheckpointImpl.NO_REENTRANT, preserve_rng_state=False ) m.to(**kw) m.compile() optim = torch.optim.SGD(m.parameters(), lr=0.0) probe = AutoProbeD(m, "./probe.json") for i in range(4): with contextlib.ExitStack() as stack: print(f"########### STEP {i}") if i % 4 == 1: stack.enter_context(probe) probe.metadata = {"it": i} y = m(x) g = torch.randn_like(y) y.backward(g) if i % 4 == 1: assert probe.enabled # Make sure we registered all linears print(list(probe.store.keys())) for key in [ "Model::attns_out", "Model::attns_out.g", "Model.attn1::attn_logits", "Model.attn2::attn_logits", "Model.attnSDPA::attn_logits", "Model.attnSDPAflash::attn_logits", "Model.head::w", "Model.head::w.g", "Model.head::in", "Model.head::in.g", "Model.head::out", "Model.head::out.g", "Model.trunk.0::in", "Model.trunk.1::in", ]: assert key in probe.store, f"Missing key: '{key}'" # .. and that the values are correct for key, tensor in [ ("Model.head::w", m.head.weight), ("Model.head::w.g", m.head.weight.grad), ("Model.q_proj::in", x), ("Model.q_proj::w.g", m.q_proj.weight.grad), ("Model.head::out", y), ("Model.head::out.g", g), ]: assert key in probe.store, f"Missing key: '{key}'" assert torch.allclose( probe.store[key]["abs.mean"], tensor.float().abs().mean() ), f"'{key}' mismatches" # Check we don't have `nans` for key, value in probe.store.items(): if "abs.mean" in value: assert math.isfinite( value["abs.mean"].item() ), f"Inf/Nan for {key}" optim.step() optim.zero_grad()