import logging import os import torch from bytelatent.args import EvalArgs from bytelatent.config_parser import parse_args_to_pydantic_model from bytelatent.data.file_util import get_fs from bytelatent.data.patcher import Patcher from bytelatent.distributed import ( DistributedArgs, dist_max, dist_min, dist_sum, get_device_mesh, setup_torch_distributed, ) from bytelatent.generate import load_consolidated_model_and_tokenizer from bytelatent.model.blt import ByteLatentTransformer from bytelatent.tokenizers.blt_tokenizer import BltTokenizer logger = logging.getLogger() def get_max_length(input_tokens: list[list[int]] | None) -> int: # reduce max length prompt over all processes to have an equal number of call on each process with fsdp if input_tokens is None: max_length = 0 else: max_length = max([len(t) for t in input_tokens]) if torch.distributed.is_initialized(): max_length = int(dist_max(max_length)) return max_length def get_min_length(input_tokens: list[list[int]] | None) -> int: # reduce min length prompt over all processes to have an equal number of call on each process with fsdp if input_tokens is None: # TODO: Double check this change from int(1e9) is correct min_length = 0 else: min_length = min([len(t) for t in input_tokens]) if torch.distributed.is_initialized(): min_length = int(dist_min(min_length)) return min_length def get_generation_range( prompt_tokens: list[list[int]] | None, max_gen_len: int ) -> tuple[int, int]: batch_min_prompt_length = get_min_length(prompt_tokens) batch_max_prompt_length = get_max_length(prompt_tokens) return batch_min_prompt_length, batch_max_prompt_length + max_gen_len def sample_top_k(probs, k): topk_value, _ = torch.topk(probs, k) # batch_sz x topk min_value_top_k = topk_value[:, [-1]] probs[probs < min_value_top_k] = 0.0 probs.div_(probs.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs, num_samples=1) return next_token def sample_top_p(probs, p): probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token @torch.inference_mode() def generate_nocache( prompts: list[str] | None, *, model: ByteLatentTransformer, tokenizer: BltTokenizer, patcher: Patcher, max_prompt_len: int = 256, max_gen_len: int = 256, use_sampling: bool = False, temp: float = 1.0, top_k: int = 0, top_p: float = 0.0, remove_prompts: bool = True, ) -> list[list[int]]: assert ( patcher.realtime_patching ), "generate_nocache requires patcher.realtime_patching=True" model.eval() if prompts is None: prompt_tokens = None n_truncated_prompts = 0 total_truncated_prompts = 0 else: prompt_tokens = [tokenizer.encode(t, add_eos=False) for t in prompts] n_truncated_prompts = sum([max_prompt_len < len(t) for t in prompt_tokens]) total_truncated_prompts = dist_sum(n_truncated_prompts) # Truncation prompt_tokens = [ t if len(t) < max_prompt_len else t[len(t) - max_prompt_len :] for t in prompt_tokens ] if total_truncated_prompts > 0: logger.info( f"There are {total_truncated_prompts} prompts that are truncated on the left, " f"length greater than max_prompt_len = {max_prompt_len}, " f"maximum prompt length = {get_max_length(prompt_tokens)} across all gpus." ) if prompt_tokens is None: prompt_tokens = [[tokenizer.bos_id] for _ in range(end_pos)] start_pos, end_pos = get_generation_range(prompt_tokens, max_gen_len) batch_size = len(prompt_tokens) tokens = torch.full((batch_size, end_pos), tokenizer.pad_id).cuda().long() # Copy inputs to tensor for generated tokens for i, row_tokens in enumerate(prompt_tokens): tokens[i, : len(row_tokens)] = torch.tensor(row_tokens).long() input_text_mask = tokens != tokenizer.pad_id for i, curr_pos in enumerate(range(start_pos, end_pos)): current_tokens = tokens[:, :curr_pos] patch_lengths, _ = patcher.patch(current_tokens, include_next_token=True) logits = model(current_tokens, patch_lengths=patch_lengths)[:, -1] if use_sampling: probs = torch.softmax(logits / temp, dim=-1) if top_p > 0.0: next_token = sample_top_p(probs, top_p) elif top_k > 0: next_token = sample_top_k(probs, top_k) else: next_token = torch.multinomial(probs, num_samples=1) else: next_token = torch.argmax(logits, dim=-1) next_token = torch.where( input_text_mask[:, curr_pos], tokens[:, curr_pos], next_token ) tokens[:, curr_pos] = next_token if remove_prompts: generated_tokens = [ t[len(prompt_tokens[i]) : len(prompt_tokens[i]) + max_gen_len].tolist() for i, t in enumerate(tokens) ] else: generated_tokens = [ t[: len(prompt_tokens[i]) + max_gen_len].tolist() for i, t in enumerate(tokens) ] return generated_tokens def launch_generate(eval_args: EvalArgs): assert eval_args.dump_dir is not None assert eval_args.ckpt_dir is not None distributed_args = DistributedArgs() distributed_args.configure_world() if not torch.distributed.is_initialized(): setup_torch_distributed(distributed_args) world_mesh = get_device_mesh(distributed_args) dp_mesh = world_mesh["dp_replicate"] assert distributed_args.dp_shard == 1 world_size = dp_mesh.size() world_rank = dp_mesh.get_local_rank() fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile) if ( fs.exists(eval_args.ckpt_dir) and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json")) and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0 ): consolidate_path = eval_args.ckpt_dir else: raise ValueError("Did not find a consolidated checkpoint in the ckpt_dir") model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer( consolidate_path, ) patcher_args = train_cfg.data.patcher_args.model_copy(deep=True) patcher_args.realtime_patching = True patcher_args.entropy_model_checkpoint_dir = eval_args.entropy_ckpt_dir patcher = patcher_args.build() outputs = generate_nocache( eval_args.prompts, model=model, tokenizer=tokenizer, patcher=patcher ) text_outputs = [tokenizer.decode(t) for t in outputs] for p, t in zip(eval_args.prompts, text_outputs): print(f'Prompt: "{p}" Completion: "{t}"') print() def main(): eval_args = parse_args_to_pydantic_model(EvalArgs) launch_generate(eval_args) if __name__ == "__main__": main()