mirror of
https://github.com/facebookresearch/blt.git
synced 2025-02-23 13:32:14 +00:00
Merge f058373889
into sapling-pr-archive-EntilZha
This commit is contained in:
commit
d44902da97
|
@ -45,6 +45,7 @@ class BaseTransformerArgs(BaseModel):
|
|||
norm_eps: float = 1e-5
|
||||
|
||||
rope_theta: float = 10000.0
|
||||
rope_use_fp32_in_outer_product: bool = False
|
||||
|
||||
init_base_std: float | None = None
|
||||
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
|
||||
|
@ -78,7 +79,12 @@ def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor:
|
|||
)
|
||||
|
||||
|
||||
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
||||
def precompute_freqs_cis(
|
||||
dim: int,
|
||||
end: int,
|
||||
theta: float = 10000.0,
|
||||
rope_use_fp32_in_outer_product: bool = False,
|
||||
):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
|
||||
|
@ -96,6 +102,9 @@ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|||
"""
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device)
|
||||
if rope_use_fp32_in_outer_product:
|
||||
t = t.to(torch.float32)
|
||||
|
||||
freqs = torch.outer(t, freqs).float()
|
||||
|
||||
cos, sin = freqs.cos(), freqs.sin()
|
||||
|
@ -232,22 +241,37 @@ class RotaryEmbedding(torch.nn.Module):
|
|||
RotaryEmbedding Module
|
||||
"""
|
||||
|
||||
def __init__(self, theta: float, head_dim: int, max_seqlen: int = 1024):
|
||||
def __init__(
|
||||
self,
|
||||
theta: float,
|
||||
head_dim: int,
|
||||
max_seqlen: int = 1024,
|
||||
rope_use_fp32_in_outer_product: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.theta = theta
|
||||
self.head_dim = head_dim
|
||||
self.max_seqlen = max_seqlen
|
||||
self.rope_use_fp32_in_outer_product = rope_use_fp32_in_outer_product
|
||||
|
||||
self.register_buffer(
|
||||
"freqs_cis",
|
||||
precompute_freqs_cis(dim=head_dim, end=max_seqlen, theta=theta),
|
||||
precompute_freqs_cis(
|
||||
dim=head_dim,
|
||||
end=max_seqlen,
|
||||
theta=theta,
|
||||
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
|
||||
),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def reset_parameters(self):
|
||||
self.freqs_cis[...] = precompute_freqs_cis(
|
||||
dim=self.head_dim, end=self.max_seqlen, theta=self.theta
|
||||
dim=self.head_dim,
|
||||
end=self.max_seqlen,
|
||||
theta=self.theta,
|
||||
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
|
||||
)
|
||||
|
||||
def forward(
|
||||
|
@ -577,6 +601,7 @@ class BaseTransformer(nn.Module):
|
|||
theta=args.rope_theta,
|
||||
head_dim=args.head_dim or args.dim // args.n_heads,
|
||||
max_seqlen=args.max_seqlen,
|
||||
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
||||
)
|
||||
self.eos_id = args.eos_id
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
import json
|
||||
import logging
|
||||
from collections import namedtuple
|
||||
from dataclasses import asdict
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Union
|
||||
|
@ -79,8 +78,8 @@ class MetricLogger:
|
|||
and get_is_master()
|
||||
):
|
||||
run = wandb.init(
|
||||
config=asdict(self.args),
|
||||
**asdict(self.args.logging.wandb),
|
||||
config=self.args.model_dump(),
|
||||
**self.args.logging.wandb.model_dump(),
|
||||
)
|
||||
|
||||
def log(self, metrics: dict[str, Any]):
|
||||
|
|
|
@ -414,7 +414,7 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
patch_in_forward: bool = False
|
||||
|
||||
# Architecture and dimensions
|
||||
dim_token: int = 256
|
||||
dim_token: int | None = None
|
||||
dim_global: int = 512
|
||||
dim_local_decoder: int = 512
|
||||
dim_local_encoder: int = 512
|
||||
|
@ -523,10 +523,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
use_fsdp: bool = True
|
||||
attn_to_keep: str = "all"
|
||||
|
||||
# RoPE parameters
|
||||
rope_theta: float = 10000.0
|
||||
rope_use_fp32_in_outer_product: bool = False
|
||||
|
||||
# Parameter mixing
|
||||
pm_size: int = 0
|
||||
|
||||
|
@ -619,6 +615,7 @@ def create_local_encoder(args: ByteLatentTransformerArgs) -> LocalEncoder:
|
|||
sliding_window=args.local_attention_window_len,
|
||||
use_rope=args.use_rope,
|
||||
rope_theta=args.rope_theta,
|
||||
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
||||
init_base_std=args.init_base_std,
|
||||
init_std_factor=args.init_std_factor,
|
||||
n_kv_heads=args.n_kv_heads,
|
||||
|
@ -661,6 +658,7 @@ def create_local_decoder(args: ByteLatentTransformerArgs) -> LocalDecoder:
|
|||
sliding_window=args.local_attention_window_len,
|
||||
use_rope=args.use_rope,
|
||||
rope_theta=args.rope_theta,
|
||||
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
||||
init_base_std=args.init_base_std,
|
||||
init_std_factor=args.init_std_factor,
|
||||
n_kv_heads=args.n_kv_heads,
|
||||
|
|
|
@ -86,6 +86,7 @@ class LocalModelBase(nn.Module):
|
|||
theta=args.rope_theta,
|
||||
head_dim=args.head_dim or args.dim // args.n_heads,
|
||||
max_seqlen=args.max_seqlen,
|
||||
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
||||
)
|
||||
self.pos_embeddings = None
|
||||
|
||||
|
|
|
@ -4,14 +4,15 @@ import json
|
|||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
from dataclasses import dataclass
|
||||
from pydantic import BaseModel
|
||||
from typing import Any, Dict
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
|
||||
@dataclass
|
||||
class StoolArgs:
|
||||
class StoolArgs(BaseModel):
|
||||
name: str = None
|
||||
dump_dir: str = None
|
||||
config: Any = None
|
||||
launcher: str = "sbatch" # Can be sbatch or bash if already in salloc
|
||||
script: str = "apps.main.train" # The script to run.
|
||||
|
@ -64,7 +65,7 @@ source activate {conda_env_path}
|
|||
export OMP_NUM_THREADS=1
|
||||
export LAUNCH_WITH="SBATCH"
|
||||
export DUMP_DIR={dump_dir}
|
||||
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml
|
||||
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml dump_dir=$DUMP_DIR name={name}
|
||||
"""
|
||||
|
||||
|
||||
|
@ -150,8 +151,8 @@ def validate_args(args) -> None:
|
|||
def launch_job(args: StoolArgs):
|
||||
# Set up args default and validate them depending on the cluster or partition requested
|
||||
validate_args(args)
|
||||
dump_dir = args.config["dump_dir"]
|
||||
job_name = args.config["name"]
|
||||
job_name = args.name or args.config["name"]
|
||||
dump_dir = os.path.join(args.dump_dir, job_name) or args.config["dump_dir"]
|
||||
print("Creating directories...")
|
||||
os.makedirs(dump_dir, exist_ok=args.dirs_exists_ok or args.override)
|
||||
if args.override:
|
||||
|
@ -230,8 +231,7 @@ if __name__ == "__main__":
|
|||
Then you can pass model.dim=32 to change values in LMTransformerArgs
|
||||
or just name=tictac for top level attributes.
|
||||
"""
|
||||
raise NotImplementedError("Update this to blt code")
|
||||
args = OmegaConf.from_cli()
|
||||
args.config = OmegaConf.load(args.config)
|
||||
args = dataclass_from_dict(StoolArgs, args)
|
||||
args = StoolArgs.model_validate(args)
|
||||
launch_job(args)
|
||||
|
|
|
@ -337,6 +337,7 @@ def train(args: TrainArgs):
|
|||
|
||||
# log model size
|
||||
|
||||
logger.info(model)
|
||||
logger.info(f"Model size: {model_param_count:,} total parameters")
|
||||
|
||||
gpu_memory_monitor = GPUMemoryMonitor("cuda")
|
||||
|
|
Loading…
Reference in a new issue