Add approximate state persistence

Summary:

Test Plan:

***
More verbose multiprocess logging, fix get_state_and_recycle

Summary:

Test Plan:
This commit is contained in:
Pedro Rodriguez 2025-03-05 21:23:21 +00:00
parent 9bd51df961
commit c3ad8b60f4
3 changed files with 199 additions and 77 deletions

View file

@ -13,7 +13,10 @@ from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.looping_iterator import LoopingIterator
from bytelatent.data.iterators.multiprocess_iterator import MultiprocessIterator
from bytelatent.data.iterators.multiprocess_iterator import (
MultiprocessIterator,
PersistType,
)
from bytelatent.data.iterators.packing_iterator import (
PackingArgs,
PackingIterator,
@ -130,6 +133,7 @@ class DataloaderArgs(BaseModel):
add_bos: bool = True
add_eos: bool = True
load_async: bool = True
async_persist_type: PersistType = PersistType.EXACT
prefetch_size: int = 64
preprocess_dir: str | None = None
dataset_files: list[str] | None = None
@ -215,7 +219,9 @@ class DataloaderArgs(BaseModel):
packing_iterator = PackingIterator(sampling_iterator, packing_args=packing_args)
if self.load_async:
mp_iterator = MultiprocessIterator(
packing_iterator, n_batches_to_prefetch=self.prefetch_size
packing_iterator,
n_batches_to_prefetch=self.prefetch_size,
persist_type=self.async_persist_type,
)
return mp_iterator
else:

View file

@ -2,6 +2,7 @@
import json
import logging
import multiprocessing as mp
from enum import Enum
from multiprocessing.synchronize import Event as EventClass
from queue import Empty, Full
@ -19,11 +20,17 @@ from bytelatent.data.iterators.packing_iterator import PackingIteratorState
logger = logging.getLogger()
class PersistType(str, Enum):
EXACT = "exact"
APPROXIMATE = "approximate"
class MultiprocessIteratorState(PydanticIteratorState):
model_config = ConfigDict(extra="forbid")
base_iterator_state: PackingIteratorState
n_batches_to_prefetch: int
serialized_prefetch_buffer: str
persist_type: PersistType
def build(self):
base_iterator = self.base_iterator_state.build()
@ -33,14 +40,19 @@ class MultiprocessIteratorState(PydanticIteratorState):
base_iterator,
n_batches_to_prefetch=self.n_batches_to_prefetch,
prefetch_buffer=prefetch_buffer,
persist_type=self.persist_type,
)
def start_work_from_state(
batch_queue: mp.Queue,
state_queue: mp.Queue,
approximate_state_queue: mp.Queue,
stop_event: EventClass,
state_dumped_event: EventClass,
trigger_approximate_send_state_event: EventClass,
sent_approximate_state_event: EventClass,
received_approximate_state_event: EventClass,
state: IteratorState,
):
logging.info("Worker thread: Starting base_iterator work")
@ -49,6 +61,25 @@ def start_work_from_state(
for item in iterator:
while not stop_event.is_set():
try:
if trigger_approximate_send_state_event.is_set():
logger.info("WT: trigger_approximate_send ack")
# Since this can be triggered again (but only after the state is received on mp),
# we should cleanup as soon as possible.
trigger_approximate_send_state_event.clear()
logging.info("WT: Computing approximate state")
approximate_state = stateful_iterator.get_state()
# At this state, there should always be exactly 1 slot.
# Blocking here would be a bug.
logger.info("WT: Attempting to send approximate state")
approximate_state_queue.put(
approximate_state, block=True, timeout=None
)
sent_approximate_state_event.set()
logger.info("WT: Approximate state sent")
# Same here, clear events as we no longer need them.
received_approximate_state_event.wait()
received_approximate_state_event.clear()
logger.info("WT: State received by MT, resuming batch iteration")
# Attempt to put on queue or timeout to try again (maybe main thread is busy)
batch_queue.put(item, timeout=0.1)
# On success, stop trying
@ -58,10 +89,10 @@ def start_work_from_state(
if stop_event.is_set():
# Signal the end of output, this ensures that even if the queue takes a while to
# buffer, that the main thread receives everything (and tosses this fake batch)
logging.debug(
logging.info(
"Worker thread: Stop event detected, outputting is_final=True batch"
)
logging.debug("Worker thread: batch_queue full=%s", batch_queue.full())
logging.info("Worker thread: batch_queue full=%s", batch_queue.full())
batch_queue.put(
Batch(
x=np.zeros((1, 1)),
@ -72,23 +103,26 @@ def start_work_from_state(
ngram_ids=None,
)
)
logging.debug(
logging.info(
"Worker thread: is_final=True batch put in queue, breaking from loop."
)
break
try:
logging.debug("Worker thread: outputting state")
logging.info("Worker thread: outputting state")
state_queue.put(stateful_iterator.get_state(), timeout=1)
logging.debug("Worker thread: state dump complete")
logging.info("Worker thread: state dump complete")
state_dumped_event.set()
logging.debug("Worker thread: set state_dump_event")
logging.info("Worker thread: set state_dump_event")
except Full:
raise ValueError(
"Attempted to dump state into the state queue, but it was full"
)
FETCH_STATE_TIMEOUT = 120
class MultiprocessIterator(StatefulIterator):
"""
Design sketch of the multiprocess iterator:
@ -124,18 +158,24 @@ class MultiprocessIterator(StatefulIterator):
base_iterator: StatefulIterator,
*,
n_batches_to_prefetch: int,
prefetch_buffer: list | None = None
prefetch_buffer: list | None = None,
persist_type: PersistType = PersistType.EXACT,
):
self.base_iterator = base_iterator
self.n_batches_to_prefetch = n_batches_to_prefetch
self.persist_type = persist_type
if prefetch_buffer is None:
prefetch_buffer = []
self.prefetch_buffer = prefetch_buffer
self.batch_queue = None
self.state_queue = None
self.approximate_state_queue = None
self.producer = None
self.stop_iterating_event = None
self.state_dumped_event = None
self.trigger_approximate_send_state_event = None
self.sent_approximate_state_event = None
self.received_approximate_state_event = None
self.force_shutdown = False
def shutdown(self):
@ -144,6 +184,92 @@ class MultiprocessIterator(StatefulIterator):
self.producer.kill()
self.force_shutdown = True
def _get_state_exact(self):
logging.info("Main thread: Sending stop iteration event")
self.stop_iterating_event.set()
logging.info(
"Main thread: Emptying the batch_queue until batch.is_final=True is found."
)
self.prefetch_buffer = []
final_batch_received = False
while True:
try:
batch = self.batch_queue.get(timeout=1)
if batch.is_final:
logging.info(
"Main thread: is_final=True batch found, stopping fetch from batch_queue"
)
final_batch_received = True
break
self.prefetch_buffer.append(batch)
except Empty:
logging.warning("Main thread: batch_queue is abnormally empty")
assert final_batch_received
logging.info("Main thread: Waiting for state_dumped event")
self.state_dumped_event.wait()
try:
logging.info(
"Main thread: state_dumped_event received, waiting for state from queue"
)
base_iterator_state = self.state_queue.get(timeout=FETCH_STATE_TIMEOUT)
logging.info("Main thread: received state from queue")
assert isinstance(base_iterator_state, IteratorState)
except Empty:
raise ValueError(
"Attempted to get the state, but it was unexpectantly missing"
)
self.base_iterator = base_iterator_state.build()
self.producer.close()
self.producer = None
self.batch_queue = None
self.state_queue = None
self.approximate_state_queue = None
self.stop_iterating_event = None
self.state_dumped_event = None
self.trigger_approximate_send_state_event = None
self.sent_approximate_state_event = None
self.received_approximate_state_event = None
return MultiprocessIteratorState(
base_iterator_state=self.base_iterator.get_state(),
n_batches_to_prefetch=self.n_batches_to_prefetch,
serialized_prefetch_buffer=json.dumps(
[b.to_python_dict() for b in self.prefetch_buffer]
),
persist_type=self.persist_type,
)
def _get_state_approximate(self):
logging.info("MT: Sending approximate get_state request")
self.trigger_approximate_send_state_event.set()
logging.info("MT: Waiting for sent_approximate_state_event")
self.sent_approximate_state_event.wait()
logging.info("MT: sent_approximate_state_event ack")
try:
logging.info("MT: waiting for approximate state in queue")
base_iterator_state = self.approximate_state_queue.get(
timeout=FETCH_STATE_TIMEOUT
)
logging.info("MT: approximate state received")
assert isinstance(base_iterator_state, IteratorState)
assert self.approximate_state_queue.empty()
except Empty:
raise ValueError(
"Attempted to get approximate state, but queue was erroniously empty."
)
self.received_approximate_state_event.set()
return MultiprocessIteratorState(
base_iterator_state=base_iterator_state,
n_batches_to_prefetch=self.n_batches_to_prefetch,
serialized_prefetch_buffer=json.dumps(
[b.to_python_dict() for b in self.prefetch_buffer]
),
persist_type=self.persist_type,
)
def get_state(self) -> MultiprocessIteratorState:
"""
This is slightly unusual in effectively destroying the current iterator, its necessary
@ -162,55 +288,15 @@ class MultiprocessIterator(StatefulIterator):
base_iterator_state=self.base_iterator.get_state(),
n_batches_to_prefetch=self.n_batches_to_prefetch,
serialized_prefetch_buffer=serialized_prefetch_buffer,
persist_type=self.persist_type,
)
else:
logging.debug("Main thread: Sending stop iteration event")
self.stop_iterating_event.set()
logging.debug(
"Main thread: Emptying the batch_queue until batch.is_final=True is found."
)
self.prefetch_buffer = []
final_batch_received = False
while True:
try:
batch = self.batch_queue.get(timeout=1)
if batch.is_final:
logging.debug(
"Main thread: is_final=True batch found, stopping fetch from batch_queue"
)
final_batch_received = True
break
self.prefetch_buffer.append(batch)
except Empty:
logging.warning("Main thread: batch_queue is abnormally empty")
assert final_batch_received
logging.debug("Main thread: Waiting for state_dumped event")
self.state_dumped_event.wait()
try:
base_iterator_state = self.state_queue.get(timeout=1)
assert isinstance(base_iterator_state, IteratorState)
except Empty:
raise ValueError(
"Attempted to get the state, but it was unexpectantly missing"
)
self.base_iterator = base_iterator_state.build()
self.producer.close()
self.producer = None
self.batch_queue = None
self.state_queue = None
self.stop_iterating_event = None
self.state_dumped_event = None
return MultiprocessIteratorState(
base_iterator_state=self.base_iterator.get_state(),
n_batches_to_prefetch=self.n_batches_to_prefetch,
serialized_prefetch_buffer=json.dumps(
[b.to_python_dict() for b in self.prefetch_buffer]
),
)
if self.persist_type == PersistType.EXACT:
return self._get_state_exact()
elif self.persist_type == PersistType.APPROXIMATE:
return self._get_state_approximate()
else:
raise ValueError("invalid persist_type")
def create_iter(self):
if self.force_shutdown:
@ -236,8 +322,14 @@ class MultiprocessIterator(StatefulIterator):
# We should only ever one state, which is output at the detection of a stop event
self.state_queue = ctx.Manager().Queue(maxsize=1)
# Similarly, there should only ever be one state in flight due to event signals
self.approximate_state_queue = ctx.Manager().Queue(maxsize=1)
self.stop_iterating_event = ctx.Event()
self.state_dumped_event = ctx.Event()
self.trigger_approximate_send_state_event = ctx.Event()
self.sent_approximate_state_event = ctx.Event()
self.received_approximate_state_event = ctx.Event()
self.producer = mp.Process(
name="blt_data_loader",
@ -245,8 +337,12 @@ class MultiprocessIterator(StatefulIterator):
args=(
self.batch_queue,
self.state_queue,
self.approximate_state_queue,
self.stop_iterating_event,
self.state_dumped_event,
self.trigger_approximate_send_state_event,
self.sent_approximate_state_event,
self.received_approximate_state_event,
self.base_iterator.get_state(),
),
)

View file

@ -31,6 +31,7 @@ from bytelatent.data.iterators.abstract_iterator import get_state_and_refresh
from bytelatent.data.iterators.multiprocess_iterator import (
MultiprocessIterator,
MultiprocessIteratorState,
PersistType,
)
from bytelatent.data.iterators.packing_iterator import PackingIteratorState
from bytelatent.distributed import (
@ -712,9 +713,15 @@ def train(args: TrainArgs):
if every_n_steps(
train_state, args.checkpoint.dump.every, acc_step=0
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
saved = checkpoint.save(
model,
optimizer,
@ -756,9 +763,16 @@ def train(args: TrainArgs):
if preemption_flag["flag"]:
if not saved:
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
checkpoint.save(
model,
optimizer,
@ -769,21 +783,27 @@ def train(args: TrainArgs):
requeue_slurm_job()
sys.exit(0)
if not saved:
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
if isinstance(data_loader, MultiprocessIterator):
logger.info("Closing MP iterator before exiting")
data_loader.shutdown()
gc.collect()
if not saved:
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
if isinstance(data_loader, MultiprocessIterator):
logger.info("Closing MP iterator before exiting")
data_loader.shutdown()
gc.collect()
def main():