Replace regular filesystem calls with fsspec + add s3 support

Summary:

For compatibility with either local/nfs or S3 datasets, swap to fsspec.

Add a tool to compare local and remote filesystems

Test Plan:

- Ran regular train script
- Ran with config with data in S3
This commit is contained in:
Pedro Rodriguez 2025-01-10 01:02:25 +00:00
parent d4ddb95322
commit a1d05403b4
7 changed files with 217 additions and 19 deletions

2
.gitignore vendored
View file

@ -165,4 +165,4 @@ cython_debug/
figures/
.vscode/
.DS_Store
internal/

View file

@ -46,8 +46,11 @@ def distribute_data_to_rank(
arrow_batch_size: int,
rank: int,
world_size: int,
s3_profile: str | None = None,
) -> ArrowFileIterator:
dataset_chunks = find_and_sanitize_chunks(dataset_path, world_size)
dataset_chunks = find_and_sanitize_chunks(
dataset_path, world_size, s3_profile=s3_profile
)
n_workers_per_chunk = world_size // len(dataset_chunks)
rank_to_arrow_iterator_params = []
for chunk_path in dataset_chunks:
@ -61,6 +64,7 @@ def distribute_data_to_rank(
dataset_files=None,
entropy_model_name=entropy_model_name,
arrow_batch_size=arrow_batch_size,
s3_profile=s3_profile,
)
)
return rank_to_arrow_iterator_params[rank]
@ -68,6 +72,7 @@ def distribute_data_to_rank(
class DataloaderArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
s3_profile: str | None = None
root_dir: str | None = None
sources: dict[str, float] = {}
batch_size: int = 2
@ -107,6 +112,7 @@ class DataloaderArgs(BaseModel):
arrow_batch_size=self.arrow_batch_size,
rank=rank,
world_size=world_size,
s3_profile=self.s3_profile,
)
looping_iterator = LoopingIterator(arrow_iterator)
preprocess_iterator = PreprocessIterator(

View file

@ -0,0 +1,117 @@
import os
import fsspec
import pyarrow as pa
# pyarrow needs the initialization from this import
import pyarrow.dataset # pyright: ignore
import typer
from pyarrow.lib import ArrowInvalid
from rich.progress import track
def is_valid_arrow_file(path: str):
try:
dataset = pa.dataset.dataset(path, format="arrow")
return True
except ArrowInvalid:
return False
app = typer.Typer()
S3_PREFIX = "s3://"
def get_fs(path: str, s3_profile: str | None = None) -> fsspec.AbstractFileSystem:
if path.startswith("s3://"):
if s3_profile is None:
return fsspec.filesystem("s3")
else:
return fsspec.filesystem("s3", profile=s3_profile)
else:
return fsspec.filesystem("file")
@app.command()
def print_local_to_delete(
blob_dir: str, local_dirs: list[str], s3_profile: str = "blt"
):
for s in local_dirs:
assert s.endswith("/"), "Dirs must end with /"
assert blob_dir.endswith("/"), "Dirs must end with /"
blob_fs = fsspec.filesystem("s3", profile=s3_profile)
blob_files = blob_fs.find(blob_dir)
for f in track(blob_files):
size = blob_fs.info(f)["Size"]
if not f.lower().endswith(".complete"):
assert size != 0, f"Size was invalidly zero for {f}"
blob_relative_paths = {f[len(blob_dir) - len(S3_PREFIX) :] for f in blob_files}
local_fs = fsspec.filesystem("file")
files_to_delete = []
for local_dir in local_dirs:
local_files = local_fs.find(local_dir)
for f in local_files:
relative_path = f[len(local_dir) :]
if relative_path in blob_relative_paths and not os.path.islink(f):
files_to_delete.append(f)
print(len(files_to_delete))
with open("/tmp/files_to_delete.txt", "w") as f:
for file in files_to_delete:
f.write(f"{file}\n")
@app.command()
def compare_local_to_blob(
source_dirs: list[str], dst_dir: str, s3_profile: str = "blt"
):
for s in source_dirs:
assert s.endswith("/"), "Dirs must end with /"
assert dst_dir.endswith("/"), "Dirs must end with /"
assert len(source_dirs) != 0
assert dst_dir.startswith("s3://")
local_fs = fsspec.filesystem("file")
dst_fs = fsspec.filesystem("s3", profile=s3_profile)
source_to_files = {}
all_local_files = set()
for s in source_dirs:
skipped = []
if s not in source_to_files:
source_to_files[s] = []
for f in local_fs.find(s):
if os.path.islink(f):
continue
if f.endswith(".COMPLETE") or f.endswith(".complete"):
is_complete_file = True
assert os.path.getsize(f) == 0, ".COMPLETE files should be empty"
else:
is_complete_file = False
if not is_complete_file and os.path.getsize(f) == 0:
skipped.append(f)
continue
if f.endswith(".arrow"):
if not is_valid_arrow_file(f):
skipped.append(f)
continue
source_to_files[s].append(f)
all_local_files.add(f[len(s) :])
print(s, len(source_to_files[s]), "skipped", len(skipped), skipped[:10])
dst_files = dst_fs.find(dst_dir)
print(dst_dir, len(dst_files))
dst_file_set = {f[len(dst_dir) - len(S3_PREFIX) :] for f in dst_files}
diff = all_local_files.symmetric_difference(dst_file_set)
print("Local files", len(all_local_files))
print("DST Files", len(dst_file_set))
print("Symmetric difference", len(diff))
dst_only_files = dst_file_set - all_local_files
print("DST only", len(dst_only_files), list(dst_only_files)[:10])
if __name__ == "__main__":
app()

View file

@ -1,17 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
import os
import re
from logging import getLogger
from pathlib import Path
from typing import Any, Generator
import fsspec
import pyarrow as pa
# pyarrow needs the initialization from this import
import pyarrow.dataset # pyright: ignore
import s3fs
from pydantic import BaseModel, ConfigDict
from bytelatent import ByteLatentError
from bytelatent.data.data_types import BltExample
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.abstract_iterator import IteratorState, StatefulIterator
logger = getLogger(__name__)
@ -27,6 +30,8 @@ class ArrowFileIteratorState(BaseModel, IteratorState):
dataset_files: list[str] | None
entropy_model_name: str | None
arrow_batch_size: int = 100
s3_profile: str | None
filesystem_type: str | None = None
def build(self) -> "ArrowFileIterator":
arrow_file = ArrowFileIterator(
@ -37,14 +42,17 @@ class ArrowFileIteratorState(BaseModel, IteratorState):
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
dataset_files=self.dataset_files,
s3_profile=self.s3_profile,
filesystem_type=self.filesystem_type,
)
if self.row_num != 0:
arrow_file._set_row_num(self.row_num)
return arrow_file
def shard_sort_key(file: str | Path):
match = re.search(r".+\.shard_([0-9]+)\.arrow", str(file))
def shard_sort_key(file: str):
assert isinstance(file, str)
match = re.search(r".+\.shard_([0-9]+)\.arrow", file)
shard_number = int(match.group(1))
return shard_number
@ -60,6 +68,8 @@ class ArrowFileIterator(StatefulIterator):
entropy_model_name: str | None,
arrow_batch_size: int,
dataset_files: list[str] | None = None,
s3_profile: str | None = None,
filesystem_type: str | None = None,
):
assert 0 <= worker_id < num_workers, (worker_id, num_workers)
if file_path is None and dataset_files is None:
@ -75,16 +85,41 @@ class ArrowFileIterator(StatefulIterator):
self.preprocess_dir = preprocess_dir
self.entropy_model_name = entropy_model_name
self.arrow_batch_size = arrow_batch_size
self.s3_profile = s3_profile
self.filesystem_type = filesystem_type
self.fs = None
if self.filesystem_type is not None:
if self.filesystem_type == "file":
self.fs = fsspec.filesystem("file")
elif self.filesystem_type == "s3":
self.fs = fsspec.filesystem("s3", profile=s3_profile)
if dataset_files is None:
# Prepare arrow shards
jsonl_file = Path(file_path)
parts = re.match(r"(.+)\.chunk\.[0-9]+\.jsonl", jsonl_file.name)
jsonl_file = file_path
parts = re.match(
r"(.+)\.chunk\.[0-9]+\.jsonl", os.path.basename(jsonl_file)
)
assert parts is not None
dataset = parts.group(1)
data_dir = Path(preprocess_dir) / dataset / entropy_model_name
shard_files = list(data_dir.glob(f"{jsonl_file.name}.shard_*.arrow"))
data_dir = os.path.join(preprocess_dir, dataset, entropy_model_name)
data_dir_with_glob = os.path.join(
data_dir, f"{os.path.basename(jsonl_file)}.shard_*.arrow"
)
if self.fs is None:
self.fs = get_fs(data_dir_with_glob, s3_profile=s3_profile)
if isinstance(self.fs, s3fs.S3FileSystem):
self.filesystem_type = "s3"
else:
self.filesystem_type = "file"
shard_files = self.fs.glob(data_dir_with_glob)
for s in shard_files:
if not (data_dir / f"{s.name}.complete").exists():
complete_file = os.path.join(
data_dir, f"{os.path.basename(s)}.complete"
)
if not self.fs.exists(complete_file):
raise ValueError(f"Missing .complete for input file: {s}")
shard_files = sorted(shard_files, key=shard_sort_key)
@ -92,10 +127,19 @@ class ArrowFileIterator(StatefulIterator):
raise ByteLatentError(
f"Zero shard_files found corresponding to: {file_path} using preprocess_dir={preprocess_dir} and entropy_model_name={entropy_model_name}, so the search path is data_dir={data_dir} for matches to {jsonl_file.name}.shard_*.arrow"
)
self.dataset_files = [str(f) for f in shard_files]
self.dataset_files = [f for f in shard_files]
else:
self.preprocess_dir = None
self.dataset_files = dataset_files
if dataset_files[0].startswith("s3://"):
for f in dataset_files:
assert f.startswith("s3://")
if self.fs is None:
self.fs = get_fs(dataset_files[0], s3_profile=s3_profile)
if isinstance(self.fs, s3fs.S3FileSystem):
self.filesystem_type = "s3"
else:
self.filesystem_type = "file"
def get_state(self) -> ArrowFileIteratorState:
return ArrowFileIteratorState(
@ -107,13 +151,21 @@ class ArrowFileIterator(StatefulIterator):
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
dataset_files=self.dataset_files,
s3_profile=self.s3_profile,
filesystem_type=self.filesystem_type,
)
def create_iter(
self,
) -> Generator[BltExample, Any, None]:
if self.dataset is None:
self.dataset = pa.dataset.dataset(self.dataset_files, format="arrow")
if isinstance(self.fs, s3fs.core.S3FileSystem):
filesystem = self.fs
else:
filesystem = None
self.dataset = pa.dataset.dataset(
self.dataset_files, format="arrow", filesystem=filesystem
)
self.batch_iterator = self.dataset.to_batches(
batch_size=self.arrow_batch_size
)
@ -165,7 +217,13 @@ class ArrowFileIterator(StatefulIterator):
self.batch_iterator = None
self.batch_to_consume = None
else:
self.dataset = pa.dataset.dataset(self.dataset_files, format="arrow")
if isinstance(self.fs, s3fs.core.S3FileSystem):
filesystem = self.fs
else:
filesystem = None
self.dataset = pa.dataset.dataset(
self.dataset_files, format="arrow", filesystem=filesystem
)
self.batch_iterator = self.dataset.to_batches(
batch_size=self.arrow_batch_size
)
@ -198,9 +256,14 @@ TRAIN_DATA_FILE_PATTERN = "*.chunk.*.jsonl"
def find_and_sanitize_chunks(
dataset_path: str, world_size: int, file_pattern: str = TRAIN_DATA_FILE_PATTERN
dataset_path: str,
world_size: int,
file_pattern: str = TRAIN_DATA_FILE_PATTERN,
s3_profile: str | None = None,
):
dataset_chunks = [str(p) for p in Path(dataset_path).glob(file_pattern)]
fs = get_fs(dataset_path, s3_profile=s3_profile)
path_with_glob = os.path.join(dataset_path, file_pattern)
dataset_chunks = fs.glob(path_with_glob)
n_chunks = len(dataset_chunks)
if n_chunks > world_size:

View file

@ -91,7 +91,7 @@ def init_logger(
log_file: str | None = None,
*,
name: str | None = None,
level: str = "NOTSET",
level: str = "INFO",
):
"""
Setup logging.

View file

@ -20,3 +20,4 @@ altair
submitit
typer
rich
fsspec[full]

View file

@ -5,6 +5,7 @@ import os
import subprocess
import time
import fsspec
import requests
from huggingface_hub import snapshot_download
@ -38,11 +39,21 @@ def download_dataset(repo_id, local_dir, allow_patterns):
print(f"Dataset downloaded to {local_dir}")
def parquet_to_jsonl(dataset, work_dir, src_dir, tgt_dir, ntasks=64):
def parquet_to_jsonl(
dataset, work_dir, src_dir, tgt_dir, ntasks=64, s3_profile: str | None = None
):
from datatrove.executor import LocalPipelineExecutor
from datatrove.pipeline.readers import ParquetReader
from datatrove.pipeline.writers import JsonlWriter
if tgt_dir.startswith("s3//"):
if s3_profile is None:
out_spec = tgt_dir
else:
out_spec = (tgt_dir, fsspec.filesystem("s3", profile=s3_profile))
else:
out_spec = tgt_dir
pipeline_exec = LocalPipelineExecutor(
pipeline=[
ParquetReader(
@ -52,7 +63,7 @@ def parquet_to_jsonl(dataset, work_dir, src_dir, tgt_dir, ntasks=64):
glob_pattern="**/*.parquet",
),
JsonlWriter(
tgt_dir,
out_spec,
output_filename=dataset + ".chunk.${rank}.jsonl",
compression=None,
),
@ -77,7 +88,7 @@ def setup_terashuf(work_dir):
return terashuf_dir
def main(dataset, memory, data_dir, seed=42, nchunks=32):
def main(dataset, memory, data_dir, seed=42, nchunks=32, s3_profile: str | None = None):
# Configuration
repo_id = {
"fineweb_edu": "HuggingFaceFW/fineweb-edu",