mirror of
https://github.com/facebookresearch/blt.git
synced 2025-02-23 05:22:16 +00:00
Fix multiprocessing dataloader checkpointing and use it in the train script
Summary: Test Plan:
This commit is contained in:
parent
fe45f69fbf
commit
5c8fb4f1b3
|
@ -236,7 +236,7 @@ class ArrowFileIterator(StatefulIterator):
|
||||||
|
|
||||||
def _set_row_num(self, target_row_num: int):
|
def _set_row_num(self, target_row_num: int):
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Setting arrow position to {target_row_num} for {self.dataset_files}"
|
f"Setting arrow position to {target_row_num} for {str(self.dataset_files)[:200]}"
|
||||||
)
|
)
|
||||||
if target_row_num is None or target_row_num == 0:
|
if target_row_num is None or target_row_num == 0:
|
||||||
self.row_num = 0
|
self.row_num = 0
|
||||||
|
@ -286,5 +286,5 @@ class ArrowFileIterator(StatefulIterator):
|
||||||
curr_remaining -= len(batch)
|
curr_remaining -= len(batch)
|
||||||
self.row_num = target_row_num
|
self.row_num = target_row_num
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Finished setting arrow position to {target_row_num} for {self.dataset_files}"
|
f"Finished setting arrow position to {target_row_num} for {str(self.dataset_files)[:200]}"
|
||||||
)
|
)
|
||||||
|
|
|
@ -54,9 +54,10 @@ def start_work_from_state(
|
||||||
if stop_event.is_set():
|
if stop_event.is_set():
|
||||||
# Signal the end of output, this ensures that even if the queue takes a while to
|
# Signal the end of output, this ensures that even if the queue takes a while to
|
||||||
# buffer, that the main thread receives everything (and tosses this fake batch)
|
# buffer, that the main thread receives everything (and tosses this fake batch)
|
||||||
logging.info(
|
logging.debug(
|
||||||
"Worker thread: Stop event detected, outputting is_final=True batch"
|
"Worker thread: Stop event detected, outputting is_final=True batch"
|
||||||
)
|
)
|
||||||
|
logging.debug("Worker thread: batch_queue full=%s", batch_queue.full())
|
||||||
batch_queue.put(
|
batch_queue.put(
|
||||||
Batch(
|
Batch(
|
||||||
x=np.zeros((1, 1)),
|
x=np.zeros((1, 1)),
|
||||||
|
@ -67,14 +68,17 @@ def start_work_from_state(
|
||||||
ngram_ids=None,
|
ngram_ids=None,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
logging.debug(
|
||||||
|
"Worker thread: is_final=True batch put in queue, breaking from loop."
|
||||||
|
)
|
||||||
break
|
break
|
||||||
|
|
||||||
try:
|
try:
|
||||||
logging.info("Worker thread: outputting state")
|
logging.debug("Worker thread: outputting state")
|
||||||
state_queue.put(iterator.get_state(), timeout=1)
|
state_queue.put(stateful_iterator.get_state(), timeout=1)
|
||||||
logging.info("Worker thread: state dump complete")
|
logging.debug("Worker thread: state dump complete")
|
||||||
state_dumped_event.set()
|
state_dumped_event.set()
|
||||||
logging.info("Worker thread: set state_dump_event")
|
logging.debug("Worker thread: set state_dump_event")
|
||||||
except Full:
|
except Full:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Attempted to dump state into the state queue, but it was full"
|
"Attempted to dump state into the state queue, but it was full"
|
||||||
|
@ -156,16 +160,20 @@ class MultiprocessIterator(StatefulIterator):
|
||||||
serialized_prefetch_buffer=serialized_prefetch_buffer,
|
serialized_prefetch_buffer=serialized_prefetch_buffer,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Main thread: Sending stop iteration event")
|
logging.debug("Main thread: Sending stop iteration event")
|
||||||
self.stop_iterating_event.set()
|
self.stop_iterating_event.set()
|
||||||
logging.info("Main thread: Waiting for state_dumped event")
|
logging.debug(
|
||||||
self.state_dumped_event.wait()
|
"Main thread: Emptying the batch_queue until batch.is_final=True is found."
|
||||||
|
)
|
||||||
self.prefetch_buffer = []
|
self.prefetch_buffer = []
|
||||||
final_batch_received = False
|
final_batch_received = False
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
batch = self.batch_queue.get(timeout=1)
|
batch = self.batch_queue.get(timeout=1)
|
||||||
if batch.is_final:
|
if batch.is_final:
|
||||||
|
logging.debug(
|
||||||
|
"Main thread: is_final=True batch found, stopping fetch from batch_queue"
|
||||||
|
)
|
||||||
final_batch_received = True
|
final_batch_received = True
|
||||||
break
|
break
|
||||||
self.prefetch_buffer.append(batch)
|
self.prefetch_buffer.append(batch)
|
||||||
|
@ -173,6 +181,9 @@ class MultiprocessIterator(StatefulIterator):
|
||||||
logging.warning("Main thread: batch_queue is abnormally empty")
|
logging.warning("Main thread: batch_queue is abnormally empty")
|
||||||
assert final_batch_received
|
assert final_batch_received
|
||||||
|
|
||||||
|
logging.debug("Main thread: Waiting for state_dumped event")
|
||||||
|
self.state_dumped_event.wait()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
base_iterator_state = self.state_queue.get(timeout=1)
|
base_iterator_state = self.state_queue.get(timeout=1)
|
||||||
assert isinstance(base_iterator_state, IteratorState)
|
assert isinstance(base_iterator_state, IteratorState)
|
||||||
|
|
|
@ -699,6 +699,12 @@ def train(args: TrainArgs):
|
||||||
if every_n_steps(
|
if every_n_steps(
|
||||||
train_state, args.checkpoint.dump.every, acc_step=0
|
train_state, args.checkpoint.dump.every, acc_step=0
|
||||||
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
|
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
|
||||||
|
# Re-init dataloader and iterator is necessary since get_state()
|
||||||
|
# on mp iterator shuts down MP to correctly persist state and it needs
|
||||||
|
# to be restarted.
|
||||||
|
train_state.data_loader_state = data_loader.get_state()
|
||||||
|
data_loader = train_state.data_loader_state.build()
|
||||||
|
batch_iterator = data_loader.create_iter()
|
||||||
saved = checkpoint.save(
|
saved = checkpoint.save(
|
||||||
model,
|
model,
|
||||||
optimizer,
|
optimizer,
|
||||||
|
@ -740,6 +746,12 @@ def train(args: TrainArgs):
|
||||||
|
|
||||||
if preemption_flag["flag"]:
|
if preemption_flag["flag"]:
|
||||||
if not saved:
|
if not saved:
|
||||||
|
# Re-init dataloader and iterator is necessary since get_state()
|
||||||
|
# on mp iterator shuts down MP to correctly persist state and it needs
|
||||||
|
# to be restarted.
|
||||||
|
train_state.data_loader_state = data_loader.get_state()
|
||||||
|
data_loader = train_state.data_loader_state.build()
|
||||||
|
batch_iterator = data_loader.create_iter()
|
||||||
checkpoint.save(
|
checkpoint.save(
|
||||||
model,
|
model,
|
||||||
optimizer,
|
optimizer,
|
||||||
|
@ -751,6 +763,12 @@ def train(args: TrainArgs):
|
||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
|
|
||||||
if not saved:
|
if not saved:
|
||||||
|
# Re-init dataloader and iterator is necessary since get_state()
|
||||||
|
# on mp iterator shuts down MP to correctly persist state and it needs
|
||||||
|
# to be restarted.
|
||||||
|
train_state.data_loader_state = data_loader.get_state()
|
||||||
|
data_loader = train_state.data_loader_state.build()
|
||||||
|
batch_iterator = data_loader.create_iter()
|
||||||
checkpoint.save(
|
checkpoint.save(
|
||||||
model,
|
model,
|
||||||
optimizer,
|
optimizer,
|
||||||
|
|
Loading…
Reference in a new issue