consolidated model file

This commit is contained in:
ita.zaporozhets@huggingface.co 2025-06-03 13:30:02 +00:00
parent 4ae7a62594
commit 4f86b6e7ab
2 changed files with 2829 additions and 0 deletions

2618
blt_one_file.py Normal file

File diff suppressed because it is too large Load diff

211
demo_hf.py Normal file
View file

@ -0,0 +1,211 @@
#demo_hf.py
import os
import torch
import typer
from blt_one_file import ByteLatentTransformer, ByteLatentTransformerArgs
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
from huggingface_hub import hf_hub_download
import json
#generatel_blt_consolidated.py
import logging
import os
import torch
from blt_one_file import Patcher
from bytelatent.distributed import (
dist_max,
dist_min,
)
from blt_one_file import ByteLatentTransformer
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
logger = logging.getLogger()
def get_generation_range(
prompt_tokens: list[list[int]] | None, max_gen_len: int
) -> tuple[int, int]:
batch_min_prompt_length = min([len(t) for t in prompt_tokens])
batch_max_prompt_length = max([len(t) for t in prompt_tokens])
return batch_min_prompt_length, batch_max_prompt_length + max_gen_len
def sample_top_k(probs, k):
topk_value, _ = torch.topk(probs, k) # batch_sz x topk
min_value_top_k = topk_value[:, [-1]]
probs[probs < min_value_top_k] = 0.0
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs, num_samples=1)
return next_token
def sample_top_p(probs, p):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
@torch.inference_mode()
def generate_nocache(
prompts: list[str] | None,
*,
model: ByteLatentTransformer,
tokenizer: BltTokenizer,
patcher: Patcher,
max_prompt_len: int = 256,
max_gen_len: int = 256,
use_sampling: bool = False,
temp: float = 1.0,
top_k: int = 0,
top_p: float = 0.0,
remove_prompts: bool = True,
) -> list[list[int]]:
assert (
patcher.realtime_patching
), "generate_nocache requires patcher.realtime_patching=True"
model.eval()
prompt_tokens = [tokenizer.encode(t, add_eos=False) for t in prompts]
# Truncation
prompt_tokens = [
t if len(t) < max_prompt_len else t[len(t) - max_prompt_len :]
for t in prompt_tokens
]
start_pos, end_pos = get_generation_range(prompt_tokens, max_gen_len)
batch_size = len(prompt_tokens)
tokens = torch.full((batch_size, end_pos), tokenizer.pad_id).cuda().long()
# Copy inputs to tensor for generated tokens
for i, row_tokens in enumerate(prompt_tokens):
tokens[i, : len(row_tokens)] = torch.tensor(row_tokens).long()
input_text_mask = tokens != tokenizer.pad_id
for i, curr_pos in enumerate(range(start_pos, end_pos)):
current_tokens = tokens[:, :curr_pos]
patch_lengths, _ = patcher.patch(current_tokens, include_next_token=True)
logits = model(current_tokens, patch_lengths=patch_lengths)[:, -1]
if use_sampling:
probs = torch.softmax(logits / temp, dim=-1)
if top_p > 0.0:
next_token = sample_top_p(probs, top_p)
elif top_k > 0:
next_token = sample_top_k(probs, top_k)
else:
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(logits, dim=-1)
next_token = torch.where(
input_text_mask[:, curr_pos], tokens[:, curr_pos], next_token
)
tokens[:, curr_pos] = next_token
if remove_prompts:
generated_tokens = [
t[len(prompt_tokens[i]) : len(prompt_tokens[i]) + max_gen_len].tolist()
for i, t in enumerate(tokens)
]
else:
generated_tokens = [
t[: len(prompt_tokens[i]) + max_gen_len].tolist()
for i, t in enumerate(tokens)
]
return generated_tokens
def main(prompt: str = "my name is", model_name: str = "blt-1b"):
# distributed_args = DistributedArgs()
# distributed_args.configure_world()
# if not torch.distributed.is_initialized():
# setup_torch_distributed(distributed_args)
# Set device and ensure CUDA is available
if not torch.cuda.is_available():
raise RuntimeError("CUDA is required but not available")
device = torch.device("cuda")
torch.cuda.empty_cache() # Clear any existing CUDA memory
assert model_name in ["blt-1b", "blt-7b"]
model_name = model_name.replace("-", "_")
#HF
blt_repo = "facebook/blt-1b"
# Get the model's default configuration and entropy model params
print("Loading model configuration...")
config_path = hf_hub_download(repo_id=blt_repo, filename="config.json")
entropy_params_path = hf_hub_download(repo_id=blt_repo, filename="entropy_model/params.json")
with open(config_path, 'r') as f:
config = json.load(f)
with open(entropy_params_path, 'r') as f:
entropy_params = json.load(f)
# Create model args from config
model_args = ByteLatentTransformerArgs(**config["args"])
# Update patch parameters from entropy model params
patcher_args = entropy_params["data"]["patcher_args"]
model_args.patch_in_forward = True
model_args.patch_size = patcher_args["patch_size"]
model_args.patching_mode = patcher_args["patching_mode"]
model_args.patching_threshold = patcher_args["threshold"]
model_args.patching_threshold_add = patcher_args["threshold_add"]
model_args.max_patch_length = patcher_args["max_patch_length"]
model_args.patching_batch_size = patcher_args["patching_batch_size"]
model_args.patching_device = patcher_args["patching_device"]
model_args.monotonicity = patcher_args["monotonicity"]
# Load the model with updated arguments
print("Loading model with updated arguments...")
model = ByteLatentTransformer.from_pretrained(blt_repo, args=model_args).to(device)
# Configure model's patcher
model.patcher.realtime_patching = True
model.patcher.entropy_model_checkpoint_dir = os.path.join(
"hf-weights", "entropy_model"
)
# Create tokenizer
tokenizer = BltTokenizer(
vocab_size_unit_1=model_args.vocab_size,
add_bos=True,
add_eos=True
)
# Generate text
print("Generating text...")
prompts = [prompt]
outputs = generate_nocache(
prompts,
model=model,
tokenizer=tokenizer,
patcher=model.patcher, # Use the model's patcher
max_gen_len=100
)
# Decode and print results
text_outputs = [tokenizer.decode(t) for t in outputs]
for p, t in zip(prompts, text_outputs):
print(f'Prompt: "{p}"')
print(f'Completion: "{t}"')
print()
# Clean up
torch.cuda.empty_cache()
if __name__ == "__main__":
typer.run(main)