mirror of
https://github.com/facebookresearch/blt.git
synced 2025-09-02 18:49:06 +00:00
Test first batch matches
Summary: Test Plan:
This commit is contained in:
parent
22c7fe1d1c
commit
4cee32ea8c
7 changed files with 62 additions and 5 deletions
|
@ -14,7 +14,6 @@ from typing import Any, Dict, Optional
|
|||
|
||||
import torch
|
||||
import torch.distributed
|
||||
import wandb
|
||||
import xformers.profiler
|
||||
from lingua.args import dataclass_from_dict, dump_config, flatten_dict
|
||||
from lingua.data import (
|
||||
|
@ -70,6 +69,8 @@ from bytelatent.transformer import (
|
|||
tp_parallelize,
|
||||
)
|
||||
|
||||
import wandb
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ def test_basic_arrow_file():
|
|||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
file_format="arrow",
|
||||
)
|
||||
arrow_file = initial_state.build()
|
||||
start_state = arrow_file.get_state()
|
||||
|
@ -57,6 +58,7 @@ def test_basic_arrow_file():
|
|||
row_num=251,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
file_format="arrow",
|
||||
)
|
||||
arrow_file = resumed_state.build()
|
||||
for example in arrow_file.create_iter():
|
||||
|
@ -77,6 +79,7 @@ def test_basic_arrow_file():
|
|||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
file_format="arrow",
|
||||
)
|
||||
arrow_file = rank_state.build()
|
||||
expected_ids = []
|
||||
|
|
48
bytelatent/data/test_data.py
Normal file
48
bytelatent/data/test_data.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
import os
|
||||
import pickle
|
||||
|
||||
import pytest
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from bytelatent.args import TrainArgs
|
||||
from bytelatent.constants import BLT_DATA
|
||||
|
||||
|
||||
def get_test_config():
|
||||
if "BLT_INTERNAL" in os.environ:
|
||||
internal_dir = os.environ["BLT_INTERNAL"]
|
||||
else:
|
||||
internal_dir = "../internal-blt/configs"
|
||||
test_config = os.path.join(internal_dir, "tests.yaml")
|
||||
return test_config
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not os.path.exists(get_test_config()),
|
||||
reason="Skipping since internal config is missing",
|
||||
)
|
||||
def test_first_batch_matches():
|
||||
test_config_path = get_test_config()
|
||||
default_cfg = OmegaConf.create(TrainArgs().model_dump())
|
||||
file_cfg = OmegaConf.load(test_config_path)
|
||||
merged_cfg = OmegaConf.merge(default_cfg, file_cfg)
|
||||
merged_cfg = OmegaConf.to_container(merged_cfg, resolve=True, throw_on_missing=True)
|
||||
train_args = TrainArgs.model_validate(merged_cfg)
|
||||
# MP doesn't work with async very well, but it doesn't change logic
|
||||
train_args.data.load_async = False
|
||||
|
||||
# Test data created by pickling first batch in train loop then exiting
|
||||
with open(os.path.join(BLT_DATA, "fixtures", "first_batch_0.pickle"), "rb") as f:
|
||||
first_batch = pickle.load(f)
|
||||
|
||||
# Emulate 1 node, 8 gpu training
|
||||
data_loader = train_args.data.build_from_rank(0, 8)
|
||||
batch_iterator = data_loader.create_iter()
|
||||
print("Getting first batch")
|
||||
batch = next(batch_iterator)
|
||||
assert (batch.x == first_batch.x).all()
|
||||
assert (batch.y == first_batch.y).all()
|
||||
assert (batch.mask == first_batch.mask).all()
|
||||
assert (batch.patch_lengths == first_batch.patch_lengths).all()
|
||||
assert batch.ngram_ids is None and first_batch.ngram_ids is None
|
||||
assert batch.is_final == False and batch.is_final == False
|
|
@ -11,11 +11,12 @@ from typing import Any, Union
|
|||
import fsspec
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import wandb
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from bytelatent.distributed import get_is_master
|
||||
|
||||
import wandb
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
|
@ -198,9 +199,10 @@ def upload_train_to_wandb(
|
|||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import wandb
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import wandb
|
||||
|
||||
cfg = OmegaConf.load(Path(ckpt_dir) / "config.yaml")
|
||||
cfg = OmegaConf.to_container(cfg)
|
||||
|
||||
|
|
|
@ -7,7 +7,6 @@ import os
|
|||
from pathlib import Path
|
||||
|
||||
import torch.distributed
|
||||
import wandb
|
||||
import xformers.profiler
|
||||
from pydantic import BaseModel
|
||||
from torch.profiler.profiler import profile
|
||||
|
@ -15,6 +14,8 @@ from xformers.profiler import MemSnapshotsProfiler, PyTorchProfiler
|
|||
|
||||
from bytelatent.distributed import get_is_master
|
||||
|
||||
import wandb
|
||||
|
||||
|
||||
class ProfilerArgs(BaseModel):
|
||||
run: bool = False
|
||||
|
|
|
@ -25,6 +25,7 @@ def test_entropy_model():
|
|||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
file_format="arrow",
|
||||
)
|
||||
arrow_file = initial_state.build()
|
||||
tokenizer_args = TokenizerArgs(
|
||||
|
|
|
@ -17,7 +17,6 @@ import torch
|
|||
import torch.distributed
|
||||
import torch.nn.functional
|
||||
import torch.nn.functional as F
|
||||
import wandb
|
||||
import xformers.profiler
|
||||
from torch.distributed._tensor import DTensor
|
||||
from torch.distributed.checkpoint.stateful import Stateful
|
||||
|
@ -63,6 +62,8 @@ from bytelatent.transformer import (
|
|||
tp_parallelize,
|
||||
)
|
||||
|
||||
import wandb
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
T = TypeVar("T")
|
||||
|
|
Loading…
Add table
Reference in a new issue