mirror of
https://github.com/facebookresearch/blt.git
synced 2025-01-18 16:37:46 +00:00
[WIP] Changes for training entropy model and correcting attention in local models
Summary: - Refactor local model configs to be separate and clearer - Add attention arguments and correct which attention is used in local models - Preparation for being able to have an entropy train script - Fix failing unit tests Test Plan:
This commit is contained in:
parent
caec8d2621
commit
374409fa3b
|
@ -30,6 +30,7 @@ from bytelatent.model.blt import ByteLatentTransformerArgs
|
|||
from bytelatent.optim import OptimArgs
|
||||
from bytelatent.profiling import ProfilerArgs
|
||||
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
|
||||
from bytelatent.transformer import LMTransformerArgs
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
@ -163,6 +164,8 @@ class TrainArgs(BaseModel):
|
|||
|
||||
seed: int = 42
|
||||
|
||||
debug_dynamo: bool = False
|
||||
|
||||
# Number of gradient accumulation steps
|
||||
# Total batch size is batch_size*grad_acc_steps
|
||||
grad_acc_steps: int = 1
|
||||
|
@ -176,6 +179,10 @@ class TrainArgs(BaseModel):
|
|||
data: DataloaderArgs = DataloaderArgs()
|
||||
optim: OptimArgs = OptimArgs()
|
||||
model: ByteLatentTransformerArgs = ByteLatentTransformerArgs()
|
||||
# This is only needed for training the entropy model
|
||||
entropy_model: LMTransformerArgs | None = None
|
||||
# Instead of training main model, train entropy model
|
||||
train_entropy_model: bool = False
|
||||
distributed: DistributedArgs = DistributedArgs()
|
||||
env: EnvironmentArgs = EnvironmentArgs()
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.attention.flex_attention import (
|
||||
|
@ -15,6 +15,7 @@ from torch.nn.attention.flex_attention import (
|
|||
from xformers.ops import AttentionBias, fmha
|
||||
|
||||
from bytelatent import probe
|
||||
from bytelatent.tokenizers.constants import EOS_ID
|
||||
|
||||
if int(os.environ.get("BLT_ALLOW_MISSING_FLEX_ATTENTION", False)) == 0:
|
||||
flex_attention_comp = torch.compile(flex_attention)
|
||||
|
@ -30,13 +31,14 @@ class InitStdFactor(Enum):
|
|||
|
||||
|
||||
class BaseTransformerArgs(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
dim: int = 512
|
||||
n_layers: int = 8
|
||||
head_dim: Optional[int] = None
|
||||
n_heads: Optional[int] = None
|
||||
n_kv_heads: Optional[int] = None
|
||||
head_dim: int | None = None
|
||||
n_heads: int | None = None
|
||||
n_kv_heads: int | None = None
|
||||
|
||||
ffn_dim_multiplier: Optional[float] = None
|
||||
ffn_dim_multiplier: float | None = None
|
||||
|
||||
multiple_of: int = 256
|
||||
|
||||
|
@ -44,11 +46,16 @@ class BaseTransformerArgs(BaseModel):
|
|||
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
init_base_std: Optional[float] = None
|
||||
init_base_std: float | None = None
|
||||
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
|
||||
|
||||
max_seqlen: int = 1024
|
||||
|
||||
attn_impl: str | None = "sdpa"
|
||||
attn_bias_type: str | None = None
|
||||
# Special token config
|
||||
eos_id: int | None = EOS_ID
|
||||
|
||||
|
||||
def cross_entropy(pred, target, **kwargs):
|
||||
return F.nll_loss(
|
||||
|
@ -294,6 +301,18 @@ class RMSNorm(nn.Module):
|
|||
torch.nn.init.ones_(self.weight) # type: ignore
|
||||
|
||||
|
||||
def _reshape_for_attn_bias(
|
||||
attn_bias: AttentionBias | None,
|
||||
*tensors: torch.Tensor,
|
||||
) -> list[torch.Tensor]:
|
||||
to_transform = list(tensors)
|
||||
if isinstance(attn_bias, fmha.attn_bias.BlockDiagonalCausalMask):
|
||||
# could be `view` instead of reshape during training, but for inference
|
||||
# have to reshape due to strides mismatch
|
||||
to_transform = [t.reshape(1, -1, *t.shape[2:]) for t in to_transform]
|
||||
return to_transform
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -371,9 +390,12 @@ class Attention(nn.Module):
|
|||
output = flex_attention_comp(xq, xk, xv, block_mask=mask)
|
||||
output = output.transpose(1, 2).contiguous() # B H S D -> B S H D
|
||||
|
||||
elif attn_impl == "fmha":
|
||||
elif attn_impl == "xformers":
|
||||
assert mask is None or isinstance(mask, AttentionBias)
|
||||
query_shape = xq.shape
|
||||
xq, xk, xv = _reshape_for_attn_bias(mask, xq, xk, xv)
|
||||
output = fmha.memory_efficient_attention(xq, xk, xv, attn_bias=mask)
|
||||
output = output.view(query_shape)
|
||||
# This uses B S H D instead of B H S D of pytorch
|
||||
|
||||
elif attn_impl == "sdpa":
|
||||
|
@ -522,14 +544,16 @@ class TransformerBlock(nn.Module):
|
|||
mask: Optional[Union[BlockMask, AttentionBias, str]] = None,
|
||||
attn_impl: str = "sdpa",
|
||||
) -> torch.Tensor:
|
||||
h = x + self.attention(
|
||||
attn_out = self.attention(
|
||||
self.attention_norm(x),
|
||||
freq_cis,
|
||||
tok_idx=tok_idx,
|
||||
mask=mask,
|
||||
attn_impl=attn_impl,
|
||||
)
|
||||
out = h + self.feed_forward(self.ffn_norm(h))
|
||||
h = x + attn_out
|
||||
h_norm = self.ffn_norm(h)
|
||||
out = h + self.feed_forward(h_norm)
|
||||
return out
|
||||
|
||||
def init_weights(self, init_std=None, factor=1.0):
|
||||
|
@ -545,6 +569,8 @@ class BaseTransformer(nn.Module):
|
|||
super().__init__()
|
||||
self.dim = args.dim
|
||||
self.init_base_std = args.init_base_std
|
||||
self.attn_impl = args.attn_impl
|
||||
self.attn_bias_type = args.attn_bias_type
|
||||
self.init_std_factor = InitStdFactor(args.init_std_factor)
|
||||
self.max_seqlen = args.max_seqlen
|
||||
self.rope_embeddings = RotaryEmbedding(
|
||||
|
@ -552,6 +578,7 @@ class BaseTransformer(nn.Module):
|
|||
head_dim=args.head_dim or args.dim // args.n_heads,
|
||||
max_seqlen=args.max_seqlen,
|
||||
)
|
||||
self.eos_id = args.eos_id
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
for _ in range(args.n_layers):
|
||||
|
|
|
@ -15,7 +15,6 @@ optim:
|
|||
|
||||
distributed:
|
||||
fsdp_type: full_shard
|
||||
compile: true
|
||||
model_dtype: bf16
|
||||
matmul_allow_tf32: false
|
||||
selective_activation_checkpointing: false
|
||||
|
@ -58,13 +57,13 @@ model:
|
|||
recompute_attn: false
|
||||
custom_bwd: false
|
||||
layer_ckpt: "none"
|
||||
efficient_attn: "sdpa"
|
||||
patch_only_encoder: false
|
||||
patch_only_decoder: false
|
||||
use_local_encoder_transformer: true
|
||||
init_use_gaussian: true
|
||||
init_use_depth: "current"
|
||||
attn_bias_type: "block_causal"
|
||||
attn_impl: "xformers"
|
||||
alpha_depth: "disabled"
|
||||
max_length: 256
|
||||
local_attention_window_len: 512
|
||||
|
|
|
@ -27,6 +27,7 @@ def test_basic_arrow_file():
|
|||
dataset_files=[ARROW_TEST_DATA_1],
|
||||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
)
|
||||
arrow_file = initial_state.build()
|
||||
start_state = arrow_file.get_state()
|
||||
|
@ -55,6 +56,7 @@ def test_basic_arrow_file():
|
|||
dataset_files=[ARROW_TEST_DATA_1],
|
||||
row_num=251,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
)
|
||||
arrow_file = resumed_state.build()
|
||||
for example in arrow_file.create_iter():
|
||||
|
@ -74,6 +76,7 @@ def test_basic_arrow_file():
|
|||
dataset_files=[ARROW_TEST_DATA_1],
|
||||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
)
|
||||
arrow_file = rank_state.build()
|
||||
expected_ids = []
|
||||
|
|
|
@ -11,7 +11,6 @@ import socket
|
|||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
from dataclasses import asdict, dataclass
|
||||
from functools import lru_cache, partial, reduce
|
||||
from itertools import chain
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
|
|
@ -15,8 +15,8 @@ from bytelatent.base_transformer import (
|
|||
TransformerBlock,
|
||||
)
|
||||
from bytelatent.data.patcher import Patcher, PatcherArgs
|
||||
from bytelatent.model.local_models import LocalDecoder, LocalEncoder
|
||||
from bytelatent.model.transformer import GlobalTransformer
|
||||
from bytelatent.model.global_transformer import GlobalTransformer
|
||||
from bytelatent.model.local_models import LocalDecoder, LocalEncoder, LocalModelArgs
|
||||
from bytelatent.model.utils import downsample
|
||||
from bytelatent.tokenizers.constants import BOE_ID, BOS_ID, EOS_ID, OFFSET, PAD_ID
|
||||
|
||||
|
@ -403,7 +403,6 @@ def patch_ids_from_lengths(patch_lengths, seq_len):
|
|||
|
||||
|
||||
class ByteLatentTransformerArgs(BaseTransformerArgs):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
# Basic model configuration
|
||||
seed: int = 42
|
||||
vocab_size: int = -1
|
||||
|
@ -412,7 +411,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
n_heads: int = 8
|
||||
# TODO: What is the purpose of this parameter?
|
||||
weight_tying: bool = False
|
||||
sliding_window: Optional[int] = None
|
||||
|
||||
# Architecture and dimensions
|
||||
dim_token: int = 256
|
||||
|
@ -471,11 +469,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
recompute_attn: bool = True
|
||||
custom_bwd: bool = False
|
||||
layer_ckpt: str = "all"
|
||||
efficient_attn: str | None = None
|
||||
|
||||
# Architecture options
|
||||
patch_only_encoder: bool = False
|
||||
patch_only_decoder: bool = False
|
||||
|
||||
# Initialization and attention
|
||||
init_use_gaussian: bool = True
|
||||
|
@ -541,9 +534,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
# Logging
|
||||
full_logging_n_layers: int = 4
|
||||
|
||||
# Special token config
|
||||
eos_id: int | None = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_hash_byte_sizes(self) -> Self:
|
||||
if (
|
||||
|
@ -558,22 +548,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|||
return self
|
||||
|
||||
|
||||
class LocalEncoderArgs(ByteLatentTransformerArgs):
|
||||
# Local encoder specific dimensions
|
||||
n_heads_local_encoder: int = 8
|
||||
dim_token_emb: int | None = None
|
||||
dim_patch_emb: int | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
# Override base args with local encoder specific values
|
||||
self.dim = self.dim_local_encoder
|
||||
self.n_layers = self.n_layers_local_encoder
|
||||
self.n_heads = self.n_heads_local_encoder
|
||||
self.cross_attn_decoder = False
|
||||
self.cross_attn_k = self.cross_attn_k if self.cross_attn_encoder else None
|
||||
self.attn_bias_type = "local_block_causal"
|
||||
|
||||
|
||||
class GlobalTransformerArgs(ByteLatentTransformerArgs):
|
||||
# Global encoder specific dimensions
|
||||
dim_token_emb: int | None = None
|
||||
|
@ -625,20 +599,42 @@ def create_global_transformer(args: ByteLatentTransformerArgs) -> GlobalTransfor
|
|||
|
||||
|
||||
def create_local_encoder(args: ByteLatentTransformerArgs) -> LocalEncoder:
|
||||
# First deep copy the original args
|
||||
# Replace with local encoder specific values
|
||||
local_encoder_args = args.model_copy(
|
||||
deep=True,
|
||||
update=dict(
|
||||
local_encoder_args = LocalModelArgs(
|
||||
# Updated args
|
||||
dim=args.dim_local_encoder,
|
||||
n_layers=args.n_layers_local_encoder,
|
||||
n_heads=args.n_heads_local_encoder,
|
||||
dim_token_emb=get_encoder_dim_token_emb(args),
|
||||
dim_patch_emb=get_encoder_dim_patch_emb(args),
|
||||
cross_attn_encoder=args.cross_attn_encoder,
|
||||
cross_attn_decoder=False,
|
||||
cross_attn_k=args.cross_attn_k if args.cross_attn_encoder else None,
|
||||
cross_attn_init_by_pooling=args.cross_attn_init_by_pooling,
|
||||
# Defaults
|
||||
head_dim=args.head_dim,
|
||||
max_seqlen=args.max_encoder_seq_length,
|
||||
dropout=args.dropout,
|
||||
vocab_size=args.vocab_size + args.pm_size,
|
||||
norm_eps=args.norm_eps,
|
||||
patch_size=args.patch_size,
|
||||
sliding_window=args.local_attention_window_len,
|
||||
use_rope=args.use_rope,
|
||||
rope_theta=args.rope_theta,
|
||||
init_base_std=args.init_base_std,
|
||||
init_std_factor=args.init_std_factor,
|
||||
n_kv_heads=args.n_kv_heads,
|
||||
attn_impl=args.attn_impl,
|
||||
attn_bias_type="local_block_causal",
|
||||
),
|
||||
multiple_of=args.multiple_of,
|
||||
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
||||
patching_mode=args.patching_mode,
|
||||
use_local_encoder_transformer=args.use_local_encoder_transformer,
|
||||
downsampling_by_pooling=args.downsampling_by_pooling,
|
||||
encoder_hash_byte_group_size=args.encoder_hash_byte_group_size,
|
||||
cross_attn_all_layers_encoder=args.cross_attn_all_layers_encoder,
|
||||
cross_attn_all_layers_decoder=args.cross_attn_all_layers_decoder,
|
||||
cross_attn_nheads=args.cross_attn_nheads,
|
||||
eos_id=args.eos_id,
|
||||
)
|
||||
|
||||
return LocalEncoder(local_encoder_args)
|
||||
|
@ -646,18 +642,41 @@ def create_local_encoder(args: ByteLatentTransformerArgs) -> LocalEncoder:
|
|||
|
||||
def create_local_decoder(args: ByteLatentTransformerArgs) -> LocalDecoder:
|
||||
# First deep copy the original args
|
||||
local_decoder_args = args.model_copy(
|
||||
deep=True,
|
||||
update=dict(
|
||||
local_decoder_args = LocalModelArgs(
|
||||
dim=args.dim_local_decoder,
|
||||
n_layers=args.n_layers_local_decoder,
|
||||
n_heads=args.n_heads_local_decoder,
|
||||
cross_attn_encoder=False,
|
||||
cross_attn_init_by_pooling=False, # states are already defined
|
||||
dim_token_emb=get_decoder_dim_token_emb(args),
|
||||
dim_patch_emb=args.dim_global,
|
||||
cross_attn_encoder=False,
|
||||
cross_attn_decoder=args.cross_attn_decoder,
|
||||
cross_attn_init_by_pooling=False, # states are already defined
|
||||
cross_attn_k=args.cross_attn_k if args.cross_attn_decoder else None,
|
||||
),
|
||||
# Defaults
|
||||
head_dim=args.head_dim,
|
||||
max_seqlen=args.max_encoder_seq_length,
|
||||
dropout=args.dropout,
|
||||
vocab_size=args.vocab_size + args.pm_size,
|
||||
norm_eps=args.norm_eps,
|
||||
patch_size=args.patch_size,
|
||||
sliding_window=args.local_attention_window_len,
|
||||
use_rope=args.use_rope,
|
||||
rope_theta=args.rope_theta,
|
||||
init_base_std=args.init_base_std,
|
||||
init_std_factor=args.init_std_factor,
|
||||
n_kv_heads=args.n_kv_heads,
|
||||
attn_impl=args.attn_impl,
|
||||
attn_bias_type="local_block_causal",
|
||||
multiple_of=args.multiple_of,
|
||||
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
||||
patching_mode=args.patching_mode,
|
||||
use_local_encoder_transformer=args.use_local_encoder_transformer,
|
||||
downsampling_by_pooling=args.downsampling_by_pooling,
|
||||
encoder_hash_byte_group_size=args.encoder_hash_byte_group_size,
|
||||
cross_attn_all_layers_encoder=args.cross_attn_all_layers_encoder,
|
||||
cross_attn_all_layers_decoder=args.cross_attn_all_layers_decoder,
|
||||
cross_attn_nheads=args.cross_attn_nheads,
|
||||
eos_id=args.eos_id,
|
||||
)
|
||||
|
||||
return LocalDecoder(local_decoder_args)
|
||||
|
@ -763,7 +782,6 @@ class ByteLatentTransformer(nn.Module):
|
|||
|
||||
# General configuration
|
||||
self.weight_tying = args.weight_tying
|
||||
self.sliding_window = args.sliding_window
|
||||
self.patch_size = args.patch_size
|
||||
self.patching_mode = args.patching_mode
|
||||
self.boe_id, self.bos_id, self.pad_id, self.eos_id = (
|
||||
|
|
|
@ -11,6 +11,7 @@ from xformers.ops import AttentionBias
|
|||
|
||||
from bytelatent.base_transformer import (
|
||||
BaseTransformer,
|
||||
BaseTransformerArgs,
|
||||
RMSNorm,
|
||||
flex_attention_comp,
|
||||
repeat_kv,
|
||||
|
@ -142,11 +143,10 @@ class CrossAttention(nn.Module):
|
|||
|
||||
|
||||
class GlobalTransformer(BaseTransformer):
|
||||
def __init__(self, args):
|
||||
def __init__(self, args: BaseTransformerArgs):
|
||||
super().__init__(args)
|
||||
self.dropout = args.dropout
|
||||
self.sliding_window = args.sliding_window
|
||||
self.efficient_attn = args.efficient_attn
|
||||
self.eos_id = args.eos_id
|
||||
|
||||
self.token_embedding_projection = None
|
||||
if args.dim_token_emb is not None and args.dim_token_emb != self.dim:
|
||||
|
@ -169,14 +169,19 @@ class GlobalTransformer(BaseTransformer):
|
|||
and projection to the token space.
|
||||
"""
|
||||
bs, seqlen = tokens.shape
|
||||
attn_impl = self.efficient_attn
|
||||
|
||||
h = embeds
|
||||
|
||||
mask = (
|
||||
mask
|
||||
if mask is not None
|
||||
else create_causal_mask(seqlen, attn_impl, self.sliding_window)
|
||||
else create_causal_mask(
|
||||
seqlen,
|
||||
self.attn_impl,
|
||||
self.attn_bias_type,
|
||||
tokens=tokens,
|
||||
eos_id=self.eos_id,
|
||||
)
|
||||
)
|
||||
|
||||
if self.token_embedding_projection is not None and h.shape[-1] != self.dim:
|
||||
|
@ -184,7 +189,7 @@ class GlobalTransformer(BaseTransformer):
|
|||
|
||||
h = F.dropout(h, p=self.dropout, training=self.training)
|
||||
|
||||
h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl)
|
||||
h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=self.attn_impl)
|
||||
return h, cache
|
||||
|
||||
def init_weights(self, init_base_std: float):
|
|
@ -1,11 +1,12 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
|
||||
import logging
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Any, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn
|
||||
import torch.nn as nn
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
from xformers.ops import AttentionBias
|
||||
|
@ -16,29 +17,69 @@ from bytelatent.base_transformer import (
|
|||
RotaryEmbedding,
|
||||
TransformerBlock,
|
||||
)
|
||||
from bytelatent.model.transformer import CrossAttention
|
||||
from bytelatent.model.global_transformer import CrossAttention
|
||||
from bytelatent.model.utils import create_causal_mask, downsample
|
||||
from bytelatent.tokenizers.blt_tokenizer import BOE_ID
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
class LocalModelArgs(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
# Local encoder specific dimensions
|
||||
head_dim: int | None
|
||||
dim: int
|
||||
dropout: float
|
||||
vocab_size: int
|
||||
patch_size: int
|
||||
sliding_window: int | None
|
||||
use_rope: bool
|
||||
init_base_std: float | None = None
|
||||
init_std_factor: InitStdFactor
|
||||
cross_attn_encoder: bool | None
|
||||
cross_attn_decoder: bool | None
|
||||
cross_attn_k: int | None
|
||||
cross_attn_init_by_pooling: bool
|
||||
norm_eps: float
|
||||
rope_theta: float
|
||||
max_seqlen: int
|
||||
ffn_dim_multiplier: float | None = None
|
||||
patching_mode: str
|
||||
use_local_encoder_transformer: bool
|
||||
downsampling_by_pooling: str | None
|
||||
encoder_hash_byte_group_size: Any | None = None
|
||||
cross_attn_all_layers_encoder: bool = False
|
||||
cross_attn_all_layers_decoder: bool = False
|
||||
cross_attn_nheads: int | None
|
||||
|
||||
n_layers: int
|
||||
n_heads: int
|
||||
n_kv_heads: int | None = None
|
||||
dim_token_emb: int
|
||||
dim_patch_emb: int | None
|
||||
attn_impl: str | None = "xformers"
|
||||
attn_bias_type: str | None = "local_block_causal"
|
||||
multiple_of: int = 256
|
||||
eos_id: int | None = None
|
||||
|
||||
|
||||
class LocalModelBase(nn.Module):
|
||||
def __init__(self, args):
|
||||
def __init__(self, args: LocalModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.dim = args.dim
|
||||
self.dropout = args.dropout
|
||||
self.vocab_size = args.vocab_size + args.pm_size
|
||||
self.vocab_size = args.vocab_size
|
||||
self.patch_size = args.patch_size
|
||||
|
||||
self.efficient_attn = args.efficient_attn
|
||||
self.attn_impl = args.attn_impl
|
||||
self.sliding_window = args.sliding_window
|
||||
self.use_rope = args.use_rope
|
||||
self.init_std_factor = args.init_std_factor
|
||||
self.cross_attn_encoder = getattr(args, "cross_attn_encoder", None)
|
||||
self.cross_attn_decoder = getattr(args, "cross_attn_decoder", None)
|
||||
self.cross_attn_k = getattr(args, "cross_attn_k", None)
|
||||
self.eos_id = args.eos_id
|
||||
|
||||
self.boe_id = BOE_ID
|
||||
|
||||
|
@ -54,7 +95,7 @@ class LocalModelBase(nn.Module):
|
|||
self.rope = RotaryEmbedding(
|
||||
theta=args.rope_theta,
|
||||
head_dim=args.head_dim or args.dim // args.n_heads,
|
||||
max_seqlen=getattr(args, "max_encoder_seq_length", args.max_length),
|
||||
max_seqlen=args.max_seqlen,
|
||||
)
|
||||
self.pos_embeddings = None
|
||||
|
||||
|
@ -66,21 +107,15 @@ class LocalModelBase(nn.Module):
|
|||
|
||||
self.patch_embedding_projection = self._create_patch_projection(args)
|
||||
|
||||
def _should_create_patch_projection(self, args):
|
||||
def _should_create_patch_projection(self, args: LocalModelArgs):
|
||||
dimension_mismatch = (
|
||||
getattr(args, "dim_patch_emb") and args.dim_patch_emb != self.dim
|
||||
)
|
||||
|
||||
# Check cross attention conditions
|
||||
cross_attn_conditions = (
|
||||
hasattr(args, "cross_attn_encoder")
|
||||
and args.cross_attn_encoder
|
||||
and getattr(args, "cross_attn_init_by_pooling")
|
||||
) or (
|
||||
hasattr(args, "cross_attn_decoder")
|
||||
and args.cross_attn_decoder
|
||||
and getattr(args, "cross_attn_init_by_pooling")
|
||||
)
|
||||
args.cross_attn_encoder and args.cross_attn_init_by_pooling
|
||||
) or (args.cross_attn_decoder and args.cross_attn_init_by_pooling)
|
||||
|
||||
return dimension_mismatch or cross_attn_conditions
|
||||
|
||||
|
@ -172,7 +207,7 @@ class LocalModelBase(nn.Module):
|
|||
|
||||
|
||||
class LocalEncoder(LocalModelBase):
|
||||
def __init__(self, args):
|
||||
def __init__(self, args: LocalModelArgs):
|
||||
super().__init__(args)
|
||||
self.output_proj = (
|
||||
args.patching_mode in ["entropy", "probmax"]
|
||||
|
@ -180,7 +215,6 @@ class LocalEncoder(LocalModelBase):
|
|||
|
||||
self.apply_transformer = args.use_local_encoder_transformer
|
||||
self.downsampling_by_pooling = args.downsampling_by_pooling
|
||||
self.patch_only = args.patch_only_encoder
|
||||
self.expects_hash_embeddings = args.encoder_hash_byte_group_size is not None
|
||||
self.cross_attn_encoder = args.cross_attn_encoder
|
||||
self.cross_attn_all_layers_encoder = args.cross_attn_all_layers_encoder
|
||||
|
@ -224,7 +258,14 @@ class LocalEncoder(LocalModelBase):
|
|||
""" """
|
||||
bs, seqlen = tokens.shape
|
||||
if mask is None:
|
||||
mask = create_causal_mask(seqlen, self.efficient_attn, self.sliding_window)
|
||||
mask = create_causal_mask(
|
||||
seqlen,
|
||||
self.attn_impl,
|
||||
"local_block_causal",
|
||||
sliding_window=self.sliding_window,
|
||||
tokens=tokens,
|
||||
eos_id=self.eos_id,
|
||||
)
|
||||
|
||||
h = self.apply_embedding(tokens, embeds)
|
||||
freqs_cis = self.rope(seqlen=seqlen) if self.use_rope else None
|
||||
|
@ -232,7 +273,7 @@ class LocalEncoder(LocalModelBase):
|
|||
h = F.dropout(h, p=self.dropout, training=self.training)
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.efficient_attn)
|
||||
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.attn_impl)
|
||||
# check if cross attention should be applied to either all layer or only the last layer
|
||||
if self.cross_attn_encoder and (
|
||||
i == len(self.layers) - 1 or self.cross_attn_all_layers_encoder
|
||||
|
@ -273,12 +314,10 @@ class LocalEncoder(LocalModelBase):
|
|||
|
||||
|
||||
class LocalDecoder(LocalModelBase):
|
||||
def __init__(self, args):
|
||||
def __init__(self, args: LocalModelArgs):
|
||||
super().__init__(args)
|
||||
|
||||
# Model configuration flags
|
||||
self.patch_only = args.patch_only_decoder
|
||||
self.expects_embeddings = args.share_encoder_decoder_emb
|
||||
self.cross_attn_decoder = args.cross_attn_decoder
|
||||
self.cross_attn_all_layers_decoder = args.cross_attn_all_layers_decoder
|
||||
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
|
||||
|
@ -317,7 +356,14 @@ class LocalDecoder(LocalModelBase):
|
|||
assert embeds is not None, "Embeddings must be provided"
|
||||
|
||||
if mask is None:
|
||||
mask = create_causal_mask(seqlen, self.efficient_attn, self.sliding_window)
|
||||
mask = create_causal_mask(
|
||||
seqlen,
|
||||
self.attn_impl,
|
||||
"local_block_causal",
|
||||
sliding_window=self.sliding_window,
|
||||
tokens=tokens,
|
||||
eos_id=self.eos_id,
|
||||
)
|
||||
|
||||
h = embeds
|
||||
|
||||
|
@ -347,7 +393,7 @@ class LocalDecoder(LocalModelBase):
|
|||
)
|
||||
h = h + h_cross
|
||||
|
||||
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.efficient_attn)
|
||||
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.attn_impl)
|
||||
|
||||
h_preds = self.norm(h)
|
||||
h_preds = F.dropout(h_preds, p=self.dropout, training=self.training)
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from torch.nn.attention.flex_attention import create_block_mask
|
||||
from xformers.ops import fmha
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
def patch_reduce(h, max_num_patches, reduction, patch_ids):
|
||||
"""
|
||||
|
@ -97,14 +101,69 @@ def causal_mask(b, h, q_idx, kv_idx):
|
|||
return q_idx >= kv_idx
|
||||
|
||||
|
||||
def create_causal_mask(seqlen, attn_impl, sliding_window):
|
||||
if sliding_window is not None and attn_impl == "xformers":
|
||||
def tokens_to_seqlen(batch: torch.Tensor, eos_id: int):
|
||||
"""
|
||||
0 0 0 1 0 0 0 1 0 0 0
|
||||
0 1 0 0 0 1 0 0 0 0 0
|
||||
-> 4 4 3 2 4 5
|
||||
"""
|
||||
mask = batch == eos_id
|
||||
mask[:, -1] = True # virtual eos at the end of each row
|
||||
|
||||
# 0 0 0 1 0 0 0 1 0 0 X
|
||||
# 0 1 0 0 0 1 0 0 0 0 X
|
||||
row, col = torch.where(mask)
|
||||
|
||||
# row = 0, 0, 0, 1, 1, 1
|
||||
# col = 3, 7, 10, 1, 5, 10
|
||||
seqlens = (col[1:] - col[:-1]) + (row[1:] - row[:-1]) * mask.shape[1]
|
||||
# seqlens = (4, 3, -9, 4, 5) + (0, 0, 11, 0, 0) = (4, 3, 2, 4, 5)
|
||||
return [int(col[0].item() + 1)] + seqlens.tolist()
|
||||
|
||||
|
||||
WARNED_SDPA = False
|
||||
|
||||
|
||||
def create_causal_mask(
|
||||
seqlen,
|
||||
attn_impl: str,
|
||||
attn_bias_type: str | None,
|
||||
*,
|
||||
eos_id: int | None = None,
|
||||
tokens: torch.Tensor | None = None,
|
||||
sliding_window: int | None = None,
|
||||
):
|
||||
if attn_impl == "xformers":
|
||||
if attn_bias_type is None:
|
||||
return fmha.attn_bias.LowerTriangularMask()
|
||||
elif attn_bias_type == "causal":
|
||||
assert sliding_window is None
|
||||
return fmha.attn_bias.LowerTriangularMask()
|
||||
elif attn_bias_type == "block_causal":
|
||||
assert sliding_window is None
|
||||
assert eos_id is not None
|
||||
assert tokens is not None
|
||||
return fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens(
|
||||
q_seqlen=tokens_to_seqlen(tokens, eos_id)
|
||||
)
|
||||
elif attn_bias_type == "local_block_causal":
|
||||
assert sliding_window is not None
|
||||
assert eos_id is not None
|
||||
assert tokens is not None
|
||||
return fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens(
|
||||
q_seqlen=tokens_to_seqlen(tokens, eos_id)
|
||||
).make_local_attention(sliding_window)
|
||||
else:
|
||||
return fmha.attn_bias.LocalAttentionFromBottomRightMask(
|
||||
window_left=sliding_window - 1, window_right=0
|
||||
)
|
||||
elif attn_impl == "xformers":
|
||||
return fmha.attn_bias.LowerTriangularMask()
|
||||
elif attn_impl == "sdpa":
|
||||
global WARNED_SDPA
|
||||
if not WARNED_SDPA:
|
||||
logging.warning(
|
||||
"SDPA attention being used, which doesn't have specialized attention implementations for block_causal and local_block_causal attention."
|
||||
)
|
||||
WARNED_SDPA = True
|
||||
return "causal"
|
||||
elif attn_impl == "flex_attention":
|
||||
return create_block_mask(causal_mask, None, None, seqlen, seqlen)
|
||||
|
|
38
bytelatent/preprocess/fsspec_target.py
Normal file
38
bytelatent/preprocess/fsspec_target.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import fsspec
|
||||
from luigi.target import FileSystem, FileSystemTarget
|
||||
|
||||
|
||||
class FSSpecFileSystem(FileSystem):
|
||||
def __init__(self, fs: fsspec.AbstractFileSystem):
|
||||
self.fs = fs
|
||||
|
||||
def exists(self, path):
|
||||
return self.fs.exists()
|
||||
|
||||
def remove(self, path, recursive=True, skip_trash=True):
|
||||
raise NotImplementedError()
|
||||
|
||||
def isdir(self, path):
|
||||
return self.fs.isdir(path)
|
||||
|
||||
def listdir(self, path):
|
||||
return self.fs.ls(path)
|
||||
|
||||
|
||||
class FSSpecTarget(FileSystemTarget):
|
||||
def __init__(self, path, fs: fsspec.AbstractFileSystem | None = None):
|
||||
self.path = path
|
||||
if fs is None:
|
||||
self.fsspec_fs = fsspec.filesystem("file")
|
||||
else:
|
||||
self.fsspec_fs = fs
|
||||
self._fs = None
|
||||
|
||||
@property
|
||||
def fs(self):
|
||||
if self._fs is None:
|
||||
self._fs = FSSpecFileSystem(self.fsspec_fs)
|
||||
return self._fs
|
||||
|
||||
def open(self, mode):
|
||||
return self.fs.open(self.path, mode=mode)
|
|
@ -23,9 +23,10 @@ from bytelatent.model.blt import (
|
|||
init_embeddings,
|
||||
patch_ids_from_lengths,
|
||||
)
|
||||
from bytelatent.model.transformer import CrossAttention
|
||||
from bytelatent.model.global_transformer import CrossAttention
|
||||
from bytelatent.model.utils import create_causal_mask
|
||||
from bytelatent.optim import OptimArgs, build_optimizer
|
||||
from bytelatent.tokenizers.constants import EOS_ID
|
||||
from bytelatent.train import compute_loss
|
||||
|
||||
|
||||
|
@ -51,7 +52,7 @@ def batch_to_tensors_and_gpu(batch):
|
|||
|
||||
|
||||
def fake_batch():
|
||||
batch_dict = torch.load(os.path.join(BLT_DATA, "test_batch.pt"))
|
||||
batch_dict = torch.load(os.path.join(BLT_DATA, "test_batch.pt"), weights_only=False)
|
||||
del batch_dict["x2"]
|
||||
del batch_dict["y2"]
|
||||
del batch_dict["src_names"]
|
||||
|
@ -98,18 +99,17 @@ def create_args(cross_attention=False):
|
|||
recompute_attn=False,
|
||||
custom_bwd=False,
|
||||
layer_ckpt="none",
|
||||
efficient_attn="sdpa",
|
||||
patch_only_encoder=False,
|
||||
patch_only_decoder=False,
|
||||
use_local_encoder_transformer=True,
|
||||
init_use_gaussian=True,
|
||||
init_use_depth="current",
|
||||
attn_bias_type="block_causal",
|
||||
attn_impl="xformers",
|
||||
alpha_depth="disabled",
|
||||
max_length=256,
|
||||
local_attention_window_len=512,
|
||||
max_seqlen=12288,
|
||||
downsampling_by_pooling="max",
|
||||
eos_id=EOS_ID,
|
||||
)
|
||||
return transformer_args
|
||||
|
||||
|
@ -341,10 +341,10 @@ class TestByteLatentTransformer:
|
|||
model = ByteLatentTransformer(args)
|
||||
assert model is not None
|
||||
|
||||
@pytest.mark.parametrize("attn_type", ["fmha", "sdpa"])
|
||||
def test_blt_transformer_forward(self, attn_type):
|
||||
@pytest.mark.parametrize("attn_impl", ["sdpa", "xformers"])
|
||||
def test_blt_transformer_forward(self, attn_impl):
|
||||
args = create_args()
|
||||
args = args.model_copy(update=dict(efficient_attn=attn_type))
|
||||
args = args.model_copy(update=dict(attn_impl=attn_impl))
|
||||
model = ByteLatentTransformer(args)
|
||||
model = model.cuda()
|
||||
batch = fake_batch()
|
||||
|
@ -393,7 +393,9 @@ class TestByteLatentTransformer:
|
|||
n_kv_heads=4,
|
||||
norm_eps=1e-6,
|
||||
).to("cuda")
|
||||
mask = create_causal_mask(x.shape[1], "flex_attention", sliding_window=None)
|
||||
mask = create_causal_mask(
|
||||
x.shape[1], "flex_attention", None, sliding_window=None
|
||||
)
|
||||
output = cross_attention(x, kv, mask)
|
||||
assert output is not None
|
||||
assert output.shape == (2, 256, 512)
|
||||
|
@ -440,7 +442,7 @@ class TestByteLatentTransformer:
|
|||
|
||||
def test_loss_backward(self):
|
||||
args = create_args()
|
||||
args = args.model_copy(update=dict(efficient_attn="sdpa"))
|
||||
args = args.model_copy(update=dict(attn_impl="sdpa"))
|
||||
batch = fake_batch()
|
||||
model = ByteLatentTransformer(args)
|
||||
steps = 10
|
||||
|
|
|
@ -24,6 +24,7 @@ def test_entropy_model():
|
|||
dataset_files=[ARROW_TEST_DATA],
|
||||
row_num=0,
|
||||
arrow_batch_size=100,
|
||||
s3_profile=None,
|
||||
)
|
||||
arrow_file = initial_state.build()
|
||||
tokenizer_args = TokenizerArgs(
|
||||
|
|
|
@ -644,6 +644,10 @@ def main():
|
|||
cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
|
||||
cfg = OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
|
||||
train_args = TrainArgs.model_validate(cfg)
|
||||
if train_args.debug_dynamo:
|
||||
import torch._dynamo
|
||||
|
||||
torch._dynamo.config.suppress_errors = True
|
||||
train(train_args)
|
||||
|
||||
|
||||
|
|
|
@ -22,23 +22,7 @@ from bytelatent.base_transformer import (
|
|||
RMSNorm,
|
||||
cross_entropy,
|
||||
)
|
||||
|
||||
|
||||
def create_causal_mask(seqlen, attn_impl, sliding_window):
|
||||
if sliding_window is not None and attn_impl == "xformers":
|
||||
return fmha.attn_bias.LocalAttentionFromBottomRightMask(
|
||||
window_left=sliding_window - 1, window_right=0
|
||||
)
|
||||
elif attn_impl == "xformers":
|
||||
return fmha.attn_bias.LowerTriangularMask()
|
||||
elif attn_impl == "sdpa":
|
||||
return "causal"
|
||||
elif attn_impl == "flex_attention":
|
||||
return create_block_mask(causal_mask, None, None, seqlen, seqlen)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Attention {attn_impl} with {sliding_window} sliding window not implemented"
|
||||
)
|
||||
from bytelatent.model.utils import create_causal_mask
|
||||
|
||||
|
||||
def attention_flops_per_token(n_layers, seq_len, dim, causal):
|
||||
|
@ -94,8 +78,10 @@ class LMTransformer(BaseTransformer):
|
|||
target: Optional[torch.Tensor] = None,
|
||||
tok_idx: Optional[torch.Tensor] = None,
|
||||
mask: Optional[Union[BlockMask, AttentionBias, torch.Tensor, str]] = None,
|
||||
attn_impl: str = "sdpa",
|
||||
attn_impl: str | None = None,
|
||||
):
|
||||
if attn_impl is None:
|
||||
attn_impl = self.attn_impl
|
||||
bsz, seqlen = token_values.shape
|
||||
|
||||
h = self.tok_embeddings(token_values)
|
||||
|
@ -103,7 +89,14 @@ class LMTransformer(BaseTransformer):
|
|||
mask = (
|
||||
mask
|
||||
if mask is not None
|
||||
else create_causal_mask(seqlen, attn_impl, self.sliding_window)
|
||||
else create_causal_mask(
|
||||
seqlen,
|
||||
attn_impl,
|
||||
self.attn_bias_type,
|
||||
sliding_window=self.sliding_window,
|
||||
tokens=token_values,
|
||||
eos_id=self.eos_id,
|
||||
)
|
||||
)
|
||||
h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl)
|
||||
|
||||
|
|
Loading…
Reference in a new issue