Get evals working again.

- PPL/validation: Works now and uses multi-gpu. For some reason 1 GPU differs from multi-GPU, can debug in a followup PR
- Generation evals likely work, but are very slow, so disabled for now


Test Plan:
```
torchrun --nproc-per-node 8 -m bytelatent.eval config=../internal-blt/configs/eval.yaml
```
This commit is contained in:
Pedro Rodriguez 2025-02-28 00:40:04 +00:00
parent 08b8c7cd05
commit 2cae41fe1f
6 changed files with 276 additions and 101 deletions

View file

@ -263,6 +263,10 @@ class EvalArgs(BaseModel):
dump_dir: str | None = None
ckpt_dir: str | None = None
metric_log_dir: str | None = None
run_ppl: bool = True
run_tasks: bool = False
generator: PackedCausalTransformerGeneratorArgs = (
PackedCausalTransformerGeneratorArgs()
)

View file

@ -15,6 +15,7 @@ from functools import lru_cache, partial, reduce
from itertools import chain
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
# for no recompute ops
@ -78,6 +79,40 @@ class DistributedArgs(BaseModel):
spawn_method: str = "forkserver"
def configure_world(self):
pass
if self.dp_replicate * self.dp_shard * self.tp_size != get_world_size():
logging.info("Modifying TrainArgs distributed config")
assert get_world_size() % self.dp_shard == 0
logging.info("World size: %s", get_world_size())
logging.info(
"Existing setting: train_args.distributed.dp_shard=%s",
self.dp_shard,
)
logging.info(
"Setting train_args.distributed.dp_replicate=%s, was dp_replicate=%s",
get_world_size() // self.dp_shard,
self.dp_replicate,
)
self.dp_replicate = get_world_size() // self.dp_shard
logging.info(
"Changing dp_replicate from %s to %s, to account for tp_size=%s",
self.dp_replicate,
self.dp_replicate // self.tp_size,
self.tp_size,
)
assert self.dp_replicate % self.tp_size == 0
self.dp_replicate = self.dp_replicate // self.tp_size
logger.warning(
f"Setting Data Parallel size to {self.dp_replicate * self.dp_shard}"
)
assert self.dp_replicate * self.dp_shard * self.tp_size == get_world_size()
if self.fsdp_type == "no_shard":
assert self.dp_shard == 1 and self.dp_replicate == get_world_size()
class EnvironmentArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
@ -151,6 +186,13 @@ def dist_mean_dict(x):
return r
def to_py_num(num: int | float | torch.Tensor | np.ndarray) -> int | float:
if isinstance(num, (torch.Tensor, np.ndarray)):
return num.item()
else:
return num
@lru_cache()
def get_is_torch_run() -> bool:
return os.environ.get("LOCAL_RANK") is not None

View file

@ -2,6 +2,7 @@
import json
import logging
import math
import os
from collections import defaultdict
from datetime import datetime
@ -10,22 +11,48 @@ import torch
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from rich.progress import track
from torch.nn import functional as F
from bytelatent.args import EvalArgs, ValidationArgs
from bytelatent.args import (
EvalArgs,
TrainArgs,
ValidationArgs,
find_and_sanitize_chunks,
)
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.limit_iterator import LimitIterator
from bytelatent.data.iterators.packing_iterator import (
PackingArgs,
PackingIterator,
PackingMode,
)
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
from bytelatent.data.iterators.sequence_iterator import (
SequenceIterator,
SequencePackingArgs,
)
from bytelatent.data.patcher import PatcherArgs, PatchingModeEnum
from bytelatent.distributed import (
DistributedArgs,
dist_mean_dict,
dist_sum,
get_device_mesh,
get_global_rank,
get_world_size,
setup_torch_distributed,
to_py_num,
)
from bytelatent.generate import (
PackedCausalTransformerGenerator,
load_consolidated_model_and_tokenizer,
)
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformer
EVAL_FOLDER_NAME = "{:010d}"
@ -113,19 +140,134 @@ class EvalHarnessLM(LM):
return results
def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
srcs = {}
@torch.no_grad()
def eval_ppl_on_path(
*,
world_rank: int,
world_size: int,
model: LMTransformer | ByteLatentTransformer,
tokenizer_args: TokenizerArgs,
patcher_args: PatcherArgs,
add_patches: bool,
path: str,
batch_size: int,
arrow_batch_size: int,
max_n_docs: int | None,
s3_profile: str | None = None,
):
model.eval()
tokenizer = tokenizer_args.build()
seq_len = model.get_output_seq_len()
chunks = find_and_sanitize_chunks(
path,
world_size=1,
file_pattern="*.val.jsonl",
s3_profile=s3_profile,
)
assert (
len(chunks) == 1
), f"There should be only 1 chunk per validation file, but found: {chunks}"
chunk = chunks[0]
arrow_iterator = ArrowFileIterator(
file_path=chunk,
preprocess_dir=None,
entropy_model_name=None,
worker_id=world_rank,
num_workers=world_size,
arrow_batch_size=arrow_batch_size,
s3_profile=s3_profile,
file_format="json",
)
if max_n_docs is not None:
arrow_iterator = LimitIterator(arrow_iterator, limit=max_n_docs)
preprocess_iterator = PreprocessIterator(
arrow_iterator,
patcher_args=patcher_args,
tokenizer_args=tokenizer_args,
add_patches=add_patches,
)
sequence_iterator = SequenceIterator(
preprocess_iterator,
sequence_packing_args=SequencePackingArgs(
output_seq_len=seq_len,
# Effectively disables shuffles
buffer_size=1,
),
rng_state=None,
)
packing_args = PackingArgs(
batch_size=batch_size,
seq_len=seq_len,
# TODO: make these seq lens worth with blt
max_length=seq_len,
pad_to_max_length=True,
enable_byte_ngrams=False,
pad_id=tokenizer.boe_id,
packing_mode=PackingMode.BYTES,
)
packing_iterator = PackingIterator(sequence_iterator, packing_args=packing_args)
total_loss = 0.0
n_bytes = 0
batch_iterator = packing_iterator.create_iter()
for batch in batch_iterator:
x = torch.from_numpy(batch.x).cuda()
y = torch.from_numpy(batch.y).cuda()
mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()
if tokenizer_args.name in ["bytes", "blt"]:
n_bytes += y.numel() if mask is None else mask.sum().item()
pred = model(x)
loss = F.cross_entropy(pred.flatten(0, 1), y.flatten(0, 1), reduction="sum")
total_loss += loss.item()
else:
raise NotImplementedError()
all_n_bytes = to_py_num(dist_sum(n_bytes))
all_total_loss = to_py_num(dist_sum(total_loss))
return {
"n_bytes": all_n_bytes,
"n_bytes_gpu": n_bytes,
"loss_sum": all_total_loss,
"loss_sum_gpu": total_loss,
"loss_mean": all_total_loss / all_n_bytes,
"loss_mean_gpu": total_loss / n_bytes,
"ppl": math.exp(all_total_loss / all_n_bytes) if all_n_bytes > 0 else 0.0,
"bpb": all_total_loss / math.log(2) / all_n_bytes,
}
def eval_on_val(generator, val_args: ValidationArgs, train_cfg: TrainArgs):
srcs = []
for src in val_args.sources:
path = os.path.join(val_args.root_dir, src)
srcs[path] = 1.0
srcs.append(path)
for src in train_cfg.data.sources:
path = os.path.join(train_cfg.data.root_dir, src)
srcs[path] = 1.0
srcs.append(path)
multi_state = init_choice_state(
"", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
)
path_to_iter = setup_sources(multi_state)
path_to_iter = {}
for path in srcs:
chunks = find_and_sanitize_chunks(
path,
world_size=1,
file_pattern="*.val.jsonl",
s3_profile=train_cfg.data.s3_profile,
)
assert (
len(chunks) == 1
), f"There should be only 1 chunk per validation file, but found: {chunks}"
chunk = chunks[0]
iterator = ArrowFileIterator(
dataset_files=[chunk],
file_path=None,
preprocess_dir=None,
entropy_model_name=None,
worker_id=0,
num_workers=1,
arrow_batch_size=train_cfg.data.arrow_batch_size,
s3_profile=train_cfg.data.s3_profile,
file_format="json",
)
path_to_iter[path] = iterator
max_gen_len = generator.max_gen_len
# We temporarily lower max gen len
@ -133,16 +275,11 @@ def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
all_val_metrics = {}
for src in path_to_iter:
jsonl_iterator = path_to_iter[src]
example_iterator = path_to_iter[src].create_iter()
texts = []
logger.info(f"Running validation on {src}...")
for step, (content, state) in enumerate(jsonl_iterator):
if state["current_iter"] > 0 or (
val_args.max_steps is not None and step >= val_args.max_steps
):
break
content_key = "text" if ("text" in content) else "content"
texts.append(content[content_key])
for step, example in enumerate(example_iterator):
texts.append(example.text)
_, loglikelihood, _ = generator.generate(texts)
@ -174,8 +311,18 @@ def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
def launch_eval(eval_args: EvalArgs):
assert eval_args.dump_dir is not None
assert eval_args.ckpt_dir is not None
distributed_args = DistributedArgs()
distributed_args.configure_world()
if not torch.distributed.is_initialized():
setup_torch_distributed(DistributedArgs())
setup_torch_distributed(distributed_args)
world_mesh = get_device_mesh(distributed_args)
dp_mesh = world_mesh["dp_replicate"]
assert distributed_args.dp_shard == 1
world_size = dp_mesh.size()
world_rank = dp_mesh.get_local_rank()
fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
if (
@ -187,7 +334,7 @@ def launch_eval(eval_args: EvalArgs):
else:
consolidate_path = os.path.join(eval_args.ckpt_dir, CONSOLIDATE_FOLDER)
if not fs.exists(consolidate_path) and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(eval_args.ckpt_dir)
consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
fs.mkdirs(eval_args.dump_dir, exist_ok=True)
with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
@ -200,35 +347,67 @@ def launch_eval(eval_args: EvalArgs):
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path,
)
logger.info("Model loaded")
model.eval()
generator = PackedCausalTransformerGenerator(eval_args.generator, model, tokenizer)
logger.info("Model loaded")
ppl_results = None
if eval_args.run_ppl:
assert eval_args.validation is not None
if len(eval_args.validation.sources) > 0:
ppl_results = {}
logger.info("Starting PPL evaluation on validation sets")
for source in eval_args.validation.sources:
ppl_results[source] = eval_ppl_on_path(
world_rank=world_rank,
world_size=world_size,
model=model,
tokenizer_args=train_cfg.data.tokenizer_args,
# TODO: Don't hardcode, modify based on model
patcher_args=PatcherArgs(patching_mode=PatchingModeEnum.byte),
add_patches=False,
path=os.path.join(eval_args.validation.root_dir, source),
max_n_docs=eval_args.validation.max_n_docs,
batch_size=8,
arrow_batch_size=100,
s3_profile="blt",
)
task_results = None
if eval_args.run_tasks:
assert eval_args.generator is not None
assert eval_args.harness is not None
generator = PackedCausalTransformerGenerator(
eval_args.generator, model, tokenizer
)
wrap = EvalHarnessLM(generator)
# TODO: This needs to be checked/sped up
task_results = simple_evaluate(wrap, **eval_args.harness.model_dump())
results = {"ppl": ppl_results, "tasks": task_results}
# TODO: Serial and Parallel yield slightly different number of bytes, debug this later,
# leaving this log statement here to help with that.
# logging.info("Rank: %s Results: %s", world_rank, results)
wrap = EvalHarnessLM(generator)
# Redo
results = simple_evaluate(wrap, eval_args.harness.model_dump())
val_results = None
if eval_args.validation:
val_results = eval_on_val(generator, eval_args.validation, train_cfg)
if get_global_rank() == 0:
with fs.open(os.path.join(eval_args.dump_dir, "results.json"), "w") as f:
f.write(json.dumps(results))
logger.info(f"All evaluation results: {results['results']}")
if val_results is not None:
logger.info(f"All evaluation results: {results}")
if ppl_results is not None:
with fs.open(os.path.join(eval_args.dump_dir, "validation.json"), "w") as f:
f.write(json.dumps(val_results))
logger.info(f"All validation results: {val_results}")
f.write(json.dumps(ppl_results))
logger.info(f"All validation results: {ppl_results}")
if eval_args.metric_log_dir and get_global_rank() == 0:
metric_log_path = os.path.join(eval_args.metric_log_dir, "metrics.eval.jsonl")
logger.info(f"Writing metric logs to {metric_log_path}")
timestamp = {
timestamp: dict[str, int | str] = {
"created_at": datetime.utcnow().isoformat(),
}
if eval_args.global_step is not None:
timestamp["global_step"] = eval_args.global_step
print(
json.dumps(timestamp | results["results"]),
json.dumps(timestamp | results),
file=fs.open(metric_log_path, mode="a"),
flush=True,
)
@ -236,18 +415,16 @@ def launch_eval(eval_args: EvalArgs):
val_log_path = os.path.join(
eval_args.metric_log_dir, "metrics.validation.jsonl"
)
if val_results is not None:
if ppl_results is not None:
print(
json.dumps(timestamp | val_results),
json.dumps(timestamp | ppl_results),
file=fs.open(val_log_path, mode="a"),
flush=True,
)
del generator
def main():
eval_args = parse_args(EvalArgs)
eval_args = parse_args_to_pydantic_model(EvalArgs)
launch_eval(eval_args)

View file

@ -387,8 +387,7 @@ def load_consolidated_model_and_tokenizer(
):
train_args_path = os.path.join(consolidated_path, "params.json")
fs = get_fs(train_args_path)
with fs.open(train_args_path) as f:
train_args = TrainArgs.model_validate_json(f.read())
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
if train_args.train_entropy_model:
model_args = train_args.entropy_model
@ -401,7 +400,8 @@ def load_consolidated_model_and_tokenizer(
train_args.distributed.model_dtype
]
tokenizer = train_args.data.tokenizer_args.build()
st_dict = torch.load(consolidated_path / CONSOLIDATE_NAME, weights_only=True)
with fs.open(os.path.join(consolidated_path, CONSOLIDATE_NAME)) as f:
st_dict = torch.load(f, weights_only=True)
model.load_state_dict(st_dict["model"])
model = model.cuda().eval()
for param in model.parameters():

View file

@ -55,7 +55,7 @@ class LoggingArgs(BaseModel):
class MetricLogger:
def __init__(
self,
outdir: Path,
outdir: str,
# args: TrainArgs
args: Any | None = None,
fs: fsspec.AbstractFileSystem | None = None,

View file

@ -46,6 +46,7 @@ from bytelatent.distributed import (
requeue_slurm_job,
setup_env,
setup_torch_distributed,
to_py_num,
)
from bytelatent.eval import EVAL_FOLDER_NAME, launch_eval
from bytelatent.logger import init_logger
@ -89,13 +90,6 @@ def get_iterator_state_name(iterator_state):
raise ValueError(f"Unsupported iterator to get name from: {iterator_state}")
def to_py_num(num: int | float | torch.Tensor | np.ndarray) -> int | float:
if isinstance(num, (torch.Tensor, np.ndarray)):
return num.item()
else:
return num
# TODO: Make this pydantic based instead of data class based
# TODO: Generalize this to any iterator state
@dataclass
@ -152,57 +146,13 @@ def validate_train_args(args: TrainArgs, output_size: int):
logger.info(f"Setting checkpoint path to {args.checkpoint.path}")
args.checkpoint.path = os.path.join(args.dump_dir, "checkpoints")
data_fs = get_fs(args.data.root_dir, s3_profile=args.data.s3_profile)
for source in args.data.sources:
data_path = os.path.join(args.data.root_dir, source)
assert data_fs.exists(data_path), f"{data_path} doesn't exist"
if args.data.root_dir is not None:
data_fs = get_fs(args.data.root_dir, s3_profile=args.data.s3_profile)
for source in args.data.sources:
data_path = os.path.join(args.data.root_dir, source)
assert data_fs.exists(data_path), f"{data_path} doesn't exist"
if (
args.distributed.dp_replicate
* args.distributed.dp_shard
* args.distributed.tp_size
!= get_world_size()
):
logging.info("Modifying TrainArgs distributed config")
assert get_world_size() % args.distributed.dp_shard == 0
logging.info("World size: %s", get_world_size())
logging.info(
"Existing setting: train_args.distributed.dp_shard=%s",
args.distributed.dp_shard,
)
logging.info(
"Setting train_args.distributed.dp_replicate=%s, was dp_replicate=%s",
get_world_size() // args.distributed.dp_shard,
args.distributed.dp_replicate,
)
args.distributed.dp_replicate = get_world_size() // args.distributed.dp_shard
logging.info(
"Changing dp_replicate from %s to %s, to account for tp_size=%s",
args.distributed.dp_replicate,
args.distributed.dp_replicate // args.distributed.tp_size,
args.distributed.tp_size,
)
assert args.distributed.dp_replicate % args.distributed.tp_size == 0
args.distributed.dp_replicate = (
args.distributed.dp_replicate // args.distributed.tp_size
)
logger.warning(
f"Setting Data Parallel size to {args.distributed.dp_replicate * args.distributed.dp_shard}"
)
assert (
args.distributed.dp_replicate
* args.distributed.dp_shard
* args.distributed.tp_size
== get_world_size()
)
if args.distributed.fsdp_type == "no_shard":
assert (
args.distributed.dp_shard == 1
and args.distributed.dp_replicate == get_world_size()
)
args.distributed.configure_world()
if args.model is not None:
args.model.max_seqlen = args.data.seq_len
@ -241,7 +191,9 @@ def set_preemption_flag(signum, frame):
preemption_flag["flag"] = True
def every_n_steps(train_state, freq, acc_step=None, acc_freq=None):
def every_n_steps(train_state, freq: int, acc_step=None, acc_freq=None):
if freq < 0:
return False
test = train_state.step % freq == 0
if acc_step is not None:
test = test and (train_state.acc_step == acc_step)
@ -268,7 +220,7 @@ def train(args: TrainArgs):
tokenizer = args.data.tokenizer_args.build()
validate_train_args(
args,
tokenizer.n_words,
tokenizer.get_vocab_size(),
)
dump_fs = get_fs(args.dump_dir, s3_profile=args.checkpoint.s3_profile)
if get_is_master():