blt/bytelatent/checkpoint.py

317 lines
10 KiB
Python
Raw Normal View History

2024-12-12 23:32:30 +00:00
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import os
import re
from pathlib import Path
from typing import List, Optional, Tuple
import fsspec
2024-12-12 23:32:30 +00:00
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.nn as nn
import torch.optim.optimizer
from pydantic import BaseModel, ConfigDict
from torch.distributed._tensor import DeviceMesh
from torch.distributed.checkpoint.format_utils import dcp_to_torch_save
from torch.distributed.checkpoint.state_dict import (
get_model_state_dict,
get_state_dict,
set_state_dict,
)
from bytelatent.data.file_util import get_fs
2024-12-12 23:32:30 +00:00
from bytelatent.distributed import get_is_master
logger = logging.getLogger("CHECKPOINT")
FOLDER_NAME = "{:010d}"
RE_FOLDER = r"\d{10}"
RE_CKPT = r"__\d_\d\.distcp"
CONSOLIDATE_FOLDER = "consolidated"
CONSOLIDATE_NAME = "consolidated.pth"
CONFIG_NAME = "params.json"
TRAIN_STATE_NAME = "train_state_{:05d}.json"
RE_DIGITS = re.compile(r"\d+")
class SaveEvery(BaseModel):
model_config = ConfigDict(extra="forbid")
every: int = 1000
keep: int = 0
class CheckpointArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
dump: SaveEvery = SaveEvery()
eval: SaveEvery = SaveEvery()
path: str | None = None
init_ckpt_path: str | None = None
continue_training_from_init: bool = False
s3_profile: str | None = None
2024-12-12 23:32:30 +00:00
def _get_key_step(name: str):
return int(re.findall(RE_DIGITS, name)[-1])
def consolidate_checkpoints(fs: fsspec.AbstractFileSystem, ckpt_dir: str):
2024-12-12 23:32:30 +00:00
"""
Consolidates all FSDP checkpoints in a directory to a single file
Consolidate checkpoint is saved in a subdirectory of ckpt_dir
Parameters:
ckpt_dir: str - path to the directory containing the checkpoints
Returns the path to the consolidated checkpoint
"""
consolidate_path = Path(ckpt_dir) / CONSOLIDATE_FOLDER
if not (consolidate_path / CONSOLIDATE_NAME).exists():
consolidate_path.mkdir(exist_ok=True)
logger.info(f"Consolidating to: {str(consolidate_path)}")
dcp_to_torch_save(ckpt_dir, str(consolidate_path / CONSOLIDATE_NAME))
(consolidate_path / CONFIG_NAME).write_text(
(Path(ckpt_dir) / CONFIG_NAME).read_text()
)
logger.info("Consolidated !")
return consolidate_path
def load_from_checkpoint(
ckpt_dir: str,
model: nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
model_key: str = "model",
optim_key: str = "optim",
):
if not (Path(ckpt_dir) / ".metadata").exists():
raise ValueError(
f"Please convert the checkpoint distcp format using `torch.distributed.checkpoint.format_utils.torch_save_to_dcp` before loading it"
)
state_dict = {}
if optimizer is not None:
state_dict[model_key], state_dict[optim_key] = get_state_dict(model, optimizer)
else:
state_dict[model_key] = get_model_state_dict(model)
if model_key == "": # If only loading a model directly, the key should be empty
state_dict = state_dict.pop(model_key)
dcp.load(state_dict, checkpoint_id=ckpt_dir)
# TODO: Rewrite the file operations here to use fsspec to enable s3 writing.
2024-12-12 23:32:30 +00:00
class CheckpointManager:
def __init__(self, args: CheckpointArgs):
self.path = args.path
self.fs = get_fs(self.path, s3_profile=args.s3_profile)
2024-12-12 23:32:30 +00:00
self.dump_every = args.dump
self.eval_every = args.eval
self.init_ckpt_path = args.init_ckpt_path
self.continue_training_from_init = args.continue_training_from_init
assert self.fs.exists(
2024-12-12 23:32:30 +00:00
self.path
), f"Path {self.path} does not exist and needs to be created before using CheckpointManager (use instantiate_and_make_dir)"
self.existing_saves = self.get_existing_saves()
def get_existing_saves(self) -> List[Path]:
folders = [
p
for p in Path(self.path).iterdir()
if p.is_dir() and re.match(RE_FOLDER, p.name)
]
folders.sort(key=lambda p: _get_key_step(p.name))
return folders
def clean_up(self):
logger.info("Cleaning up checkpoints...")
dump_folders = []
eval_folders = []
other_folders = []
for p in self.existing_saves:
is_dump = _get_key_step(p.name) % self.dump_every.every == 0
is_eval = _get_key_step(p.name) % self.eval_every.every == 0
if is_dump:
dump_folders.append(p)
if is_eval:
eval_folders.append(p)
if not (is_dump or is_eval):
other_folders.append(p)
logger.info(f"Dump folders: {dump_folders}")
logger.info(f"Eval folders: {eval_folders}")
logger.info(f"Other folders: {other_folders}")
if self.dump_every.keep > 0:
dump_folders = dump_folders[-self.dump_every.keep :]
if self.eval_every.keep > 0:
eval_folders = eval_folders[-self.eval_every.keep :]
folder_to_keep = set(other_folders + dump_folders + eval_folders)
folder_to_remove = set(self.existing_saves) - folder_to_keep
logger.info(f"Removing folders: {folder_to_remove}")
if dist.get_rank() == 0:
for folder in folder_to_remove:
for file in folder.iterdir():
if file.is_file():
file.unlink()
elif file.is_dir():
assert file.name in [CONSOLIDATE_FOLDER]
for f in file.iterdir():
f.unlink()
file.rmdir()
folder.rmdir()
dist.barrier()
self.existing_saves = list(folder_to_keep)
self.existing_saves.sort(key=lambda p: _get_key_step(p.name))
def get_last_step_path(self, dp_rank: int = 0) -> Optional[Path]:
path = None
for p in reversed(self.existing_saves):
if (p / TRAIN_STATE_NAME.format(dp_rank)).is_file():
path = p
break
return path
def _create_folder(self, base_path: Path, folder_name: str) -> Path:
folder = base_path / folder_name
if get_is_master():
folder.mkdir(parents=False, exist_ok=True)
if dist.is_initialized():
dist.barrier()
return folder
def _get_dp_tp_mesh(
self, device_mesh: Optional[DeviceMesh] = None
) -> Tuple[int, int]:
dp_rank = 0
tp_rank = 0
if device_mesh is not None:
if "dp_replicate" in device_mesh.mesh_dim_names:
dp_rank = device_mesh.get_local_rank("dp_replicate")
if "dp_shard" in device_mesh.mesh_dim_names:
dp_rank = dp_rank * device_mesh[
"dp_replicate"
].size() + device_mesh.get_local_rank("dp_shard")
if "tp" in device_mesh.mesh_dim_names:
tp_rank = device_mesh.get_local_rank("tp")
return dp_rank, tp_rank
@torch.no_grad()
def get_state_dict(
self,
model,
optimizer,
):
model_sd, optim_sd = get_state_dict(model, optimizer)
return {"model": model_sd, "optim": optim_sd}
def save(
self,
model,
optimizer,
train_state,
config,
device_mesh: Optional[DeviceMesh] = None,
) -> bool:
# When creating directory check if only rank0 or is there other solution
path = Path(self.path)
curr_save_dir = self._create_folder(path, FOLDER_NAME.format(train_state.step))
logger.info(f"Saving to: {str(curr_save_dir)}")
if dist.is_initialized():
dist.barrier()
logger.info("Saving...")
state_dict = self.get_state_dict(model, optimizer)
dcp.save(state_dict, checkpoint_id=curr_save_dir)
logger.info("State dict saved!")
if dist.is_initialized():
dist.barrier()
if get_is_master():
config.dump_to_yaml_file(curr_save_dir / CONFIG_NAME)
# Add json dump here
dp_rank, tp_rank = self._get_dp_tp_mesh(device_mesh)
if tp_rank == 0:
train_state_name = TRAIN_STATE_NAME.format(dp_rank)
logger.info(
f"Saving train state to: {str(curr_save_dir / train_state_name)}"
)
with open(curr_save_dir / train_state_name, "w") as f:
json.dump(train_state.state_dict(), f)
logger.info("Train state saved !")
self.existing_saves.append(curr_save_dir)
self.clean_up()
if dist.is_initialized():
dist.barrier()
return True
@torch.no_grad()
def load(
self,
model: nn.Module,
optimizer,
train_state,
device_mesh: DeviceMesh,
path: Optional[Path] = None,
):
dp_rank, tp_rank = self._get_dp_tp_mesh(device_mesh)
# Loading tries to load the provided path, if not available the last saved step and finally from the init path
path = path or self.get_last_step_path(dp_rank=dp_rank)
# If none of those are available don't do anything
if path is None:
# If no checkpoints exist do nothing
return
# Only load train state if it's provided, the files exist and we're not loading from init path
train_state_name = TRAIN_STATE_NAME.format(dp_rank)
logger.info("Reloading train state")
with open(path / train_state_name, "r") as f:
train_state_dict = json.load(f)
train_state.load_state_dict(train_state_dict)
logger.info("Train state reloaded")
logger.info(f"Loading from: {str(path)}")
state_dict = self.get_state_dict(
model=model,
optimizer=optimizer,
)
dcp.load(state_dict, checkpoint_id=path)
logger.info("State dict loaded.")
logger.info("Reloading model and optim")
set_state_dict(
model,
optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optim"],
)
logger.info("Model and optim reloaded")
@classmethod
def instantiate_and_make_dir(cls, args: CheckpointArgs):
if get_is_master():
os.makedirs(args.path, exist_ok=True)
dist.barrier()
return cls(args)