2024-12-12 23:32:30 +00:00
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
import json
|
2025-01-17 22:23:01 +00:00
|
|
|
import logging
|
2024-12-12 23:32:30 +00:00
|
|
|
import os
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from bytelatent.transformer import LMTransformer, LMTransformerArgs
|
|
|
|
|
2025-01-17 22:23:01 +00:00
|
|
|
logger = logging.getLogger()
|
|
|
|
|
2024-12-12 23:32:30 +00:00
|
|
|
|
|
|
|
def load_entropy_model(entropy_model_checkpoint_dir, state_dict_path, device="cpu"):
|
|
|
|
with open(os.path.join(entropy_model_checkpoint_dir, "params.json")) as fr:
|
|
|
|
reloaded = json.loads(fr.read())
|
|
|
|
|
|
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
model_params = reloaded["model"]
|
2025-01-17 22:23:01 +00:00
|
|
|
logger.warning(
|
|
|
|
"Update checkpoint to load attn and sliding window args from checkpoint"
|
|
|
|
)
|
2024-12-12 23:32:30 +00:00
|
|
|
entropy_model = LMTransformer(
|
|
|
|
LMTransformerArgs(
|
|
|
|
dim=model_params["dim"],
|
|
|
|
n_layers=model_params["n_layers"],
|
|
|
|
n_heads=model_params["n_heads"],
|
|
|
|
max_seqlen=model_params["max_length"],
|
|
|
|
ffn_dim_multiplier=model_params["ffn_dim_multiplier"],
|
|
|
|
vocab_size=model_params["vocab_size"],
|
2025-01-17 22:23:01 +00:00
|
|
|
attn_bias_type="local_block_causal",
|
|
|
|
attn_impl="xformers",
|
|
|
|
sliding_window=512,
|
2024-12-12 23:32:30 +00:00
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
entropy_model.load_state_dict(
|
|
|
|
torch.load(state_dict_path, map_location=device), strict=False
|
|
|
|
)
|
|
|
|
entropy_model.to(device)
|
|
|
|
entropy_model = entropy_model.eval()
|
|
|
|
# no grads for the model:
|
|
|
|
for param in entropy_model.parameters():
|
|
|
|
param.requires_grad = False
|
|
|
|
return entropy_model
|