blt/bytelatent/model/local_models.py

357 lines
13 KiB
Python
Raw Permalink Normal View History

2024-12-12 23:32:30 +00:00
# Copyright (c) Meta Platforms, Inc. and affiliates.
import logging
from typing import List, Optional, Tuple, Union
import torch
import torch.nn
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.attention.flex_attention import BlockMask
from xformers.ops import AttentionBias
from bytelatent.base_transformer import (
InitStdFactor,
RMSNorm,
RotaryEmbedding,
TransformerBlock,
)
from bytelatent.model.transformer import CrossAttention
from bytelatent.model.utils import create_causal_mask, downsample
from bytelatent.tokenizers.blt_tokenizer import BOE_ID
logger = logging.getLogger()
class LocalModelBase(nn.Module):
def __init__(self, args):
super().__init__()
self.dim = args.dim
self.dropout = args.dropout
self.vocab_size = args.vocab_size + args.pm_size
self.patch_size = args.patch_size
self.efficient_attn = args.efficient_attn
self.sliding_window = args.sliding_window
self.use_rope = args.use_rope
self.init_std_factor = args.init_std_factor
self.cross_attn_encoder = getattr(args, "cross_attn_encoder", None)
self.cross_attn_decoder = getattr(args, "cross_attn_decoder", None)
self.cross_attn_k = getattr(args, "cross_attn_k", None)
self.boe_id = BOE_ID
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.layers = nn.ModuleList(
[TransformerBlock(args) for _ in range(args.n_layers)]
)
self.tok_embeddings = nn.Embedding(self.vocab_size, args.dim)
if not self.use_rope:
self.pos_embeddings = nn.Embedding(args.max_length, args.dim)
else:
self.rope = RotaryEmbedding(
theta=args.rope_theta,
head_dim=args.head_dim or args.dim // args.n_heads,
max_seqlen=getattr(args, "max_encoder_seq_length", args.max_length),
)
self.pos_embeddings = None
self.token_embedding_projection = (
nn.Linear(args.dim_token_emb, args.dim, bias=False)
if hasattr(args, "dim_token_emb") and args.dim_token_emb != self.dim
else None
)
self.patch_embedding_projection = self._create_patch_projection(args)
def _should_create_patch_projection(self, args):
dimension_mismatch = (
getattr(args, "dim_patch_emb") and args.dim_patch_emb != self.dim
)
# Check cross attention conditions
cross_attn_conditions = (
hasattr(args, "cross_attn_encoder")
and args.cross_attn_encoder
and getattr(args, "cross_attn_init_by_pooling")
) or (
hasattr(args, "cross_attn_decoder")
and args.cross_attn_decoder
and getattr(args, "cross_attn_init_by_pooling")
)
return dimension_mismatch or cross_attn_conditions
def _create_patch_projection(self, args):
if not self._should_create_patch_projection(args):
return None
output_dim = args.dim_token_emb * (self.cross_attn_k or 1)
return nn.Linear(
in_features=args.dim_patch_emb,
out_features=output_dim,
bias=False,
)
def apply_embedding(self, tokens, embeds):
if embeds is not None:
return embeds
else:
return self.tok_embeddings(tokens)
def init_weights(self, init_std=None):
self.rope.reset_parameters()
init_std = init_std or (self.dim ** (-0.5))
nn.init.trunc_normal_(
self.tok_embeddings.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
if self.pos_embeddings is not None:
nn.init.trunc_normal_(
self.pos_embeddings.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
for depth, layer in enumerate(self.layers):
factor = {
InitStdFactor.CURRENT_DEPTH: (2 * (depth + 1)) ** 0.5,
InitStdFactor.GLOBAL_DEPTH: (2 * (len(self.layers) + 1)) ** 0.5,
InitStdFactor.DIM_RATIO: self.dim / 4096,
InitStdFactor.DISABLED: 1.0,
}[self.init_std_factor]
layer.init_weights(init_std, factor)
if self.token_embedding_projection is not None:
nn.init.trunc_normal_(
self.token_embedding_projection.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
if self.patch_embedding_projection is not None:
nn.init.trunc_normal_(
self.patch_embedding_projection.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
if hasattr(self, "output"):
nn.init.trunc_normal_(
self.output.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
if self.cross_attn_layers is not None:
for depth, layer in enumerate(self.cross_attn_layers):
factor = {
InitStdFactor.CURRENT_DEPTH: (2 * (depth + 1)) ** 0.5,
InitStdFactor.GLOBAL_DEPTH: (2 * (len(self.layers) + 1)) ** 0.5,
InitStdFactor.DIM_RATIO: self.dim / 4096,
InitStdFactor.DISABLED: 1.0,
}[self.init_std_factor]
layer.init_weights(init_std, factor)
class LocalEncoder(LocalModelBase):
def __init__(self, args):
super().__init__(args)
self.output_proj = (
args.patching_mode in ["entropy", "probmax"]
) and args.entropy_model_checkpoint_dir is None
self.apply_transformer = args.use_local_encoder_transformer
self.downsampling_by_pooling = args.downsampling_by_pooling
self.patch_only = args.patch_only_encoder
self.expects_hash_embeddings = args.encoder_hash_byte_group_size is not None
self.cross_attn_encoder = args.cross_attn_encoder
self.cross_attn_all_layers_encoder = args.cross_attn_all_layers_encoder
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
self.cross_attn_nheads = args.cross_attn_nheads
if self.cross_attn_encoder:
self.cross_attn_layers = torch.nn.ModuleList()
layers_to_add = args.n_layers if self.cross_attn_all_layers_encoder else 1
for _ in range(layers_to_add):
self.cross_attn_layers.append(
CrossAttention(
dim=self.dim,
head_dim=self.dim // self.cross_attn_nheads,
n_heads=self.cross_attn_nheads,
n_kv_heads=self.cross_attn_nheads,
norm_eps=args.norm_eps,
)
)
def apply_embedding(self, tokens, embeds):
if embeds is not None:
assert (
self.expects_hash_embeddings
), "Not expecting embeddings to be passed."
return embeds
else:
return self.tok_embeddings(tokens)
def forward(
self,
tokens: torch.Tensor,
embeds: Optional[torch.Tensor] = None,
patch_embeds: Optional[torch.Tensor] = None,
mask: Optional[Union["BlockMask", "AttentionBias", torch.Tensor, str]] = None,
cross_mask: Optional[torch.Tensor] = None,
num_patches: Optional[int] = None,
patch_ids: Optional[torch.Tensor] = None,
cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
):
""" """
bs, seqlen = tokens.shape
if mask is None:
mask = create_causal_mask(seqlen, self.efficient_attn, self.sliding_window)
h = self.apply_embedding(tokens, embeds)
freqs_cis = self.rope(seqlen=seqlen) if self.use_rope else None
h = F.dropout(h, p=self.dropout, training=self.training)
for i, layer in enumerate(self.layers):
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.efficient_attn)
# check if cross attention should be applied to either all layer or only the last layer
if self.cross_attn_encoder and (
i == len(self.layers) - 1 or self.cross_attn_all_layers_encoder
):
patch_embeds = self.apply_cross_attention(
h, patch_embeds, i, bs, num_patches, patch_ids, cross_mask
)
h_residual = patch_embeds if self.cross_attn_encoder else None
return (h, h_residual), cache
def apply_cross_attention(
self, h, patch_embeds, layer_idx, bs, num_patches, patch_ids, cross_mask
):
# apply pooling and project
if self.cross_attn_init_by_pooling and patch_embeds is None:
patch_embeds = downsample(
h,
num_patches,
patch_ids=patch_ids,
downsampling_by_pooling=self.downsampling_by_pooling,
patch_size=self.patch_size,
)
if self.patch_embedding_projection is not None:
patch_embeds = self.patch_embedding_projection(patch_embeds)
patch_embeds = patch_embeds.reshape(
bs, patch_embeds.shape[1] * self.cross_attn_k, self.dim
)
layer_idx = layer_idx if self.cross_attn_all_layers_encoder else 0
patch_embeds_cross = self.cross_attn_layers[layer_idx](
x=patch_embeds,
kv=h,
mask=cross_mask,
)
patch_embeds += patch_embeds_cross
return patch_embeds
class LocalDecoder(LocalModelBase):
def __init__(self, args):
super().__init__(args)
# Model configuration flags
self.patch_only = args.patch_only_decoder
self.expects_embeddings = args.share_encoder_decoder_emb
self.cross_attn_decoder = args.cross_attn_decoder
self.cross_attn_all_layers_decoder = args.cross_attn_all_layers_decoder
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
self.cross_attn_nheads = args.cross_attn_nheads
if self.cross_attn_decoder:
self.cross_attn_layers = torch.nn.ModuleList()
layers_to_add = args.n_layers if self.cross_attn_all_layers_decoder else 1
for _ in range(layers_to_add):
self.cross_attn_layers.append(
CrossAttention(
dim=self.dim,
head_dim=self.dim // self.cross_attn_nheads,
n_heads=self.cross_attn_nheads,
n_kv_heads=self.cross_attn_nheads,
norm_eps=args.norm_eps,
)
)
self.output = nn.Linear(
self.dim,
args.vocab_size,
bias=False,
)
def forward(
self,
tokens: torch.Tensor,
embeds: Optional[torch.Tensor],
patch_embeds: Optional[torch.Tensor] = None,
mask: Optional[Union["BlockMask", "AttentionBias", torch.Tensor, str]] = None,
cross_mask: Optional[torch.Tensor] = None,
cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
):
bs, seqlen = tokens.shape
assert embeds is not None, "Embeddings must be provided"
if mask is None:
mask = create_causal_mask(seqlen, self.efficient_attn, self.sliding_window)
h = embeds
if self.patch_embedding_projection is not None:
assert patch_embeds is not None, "Patch embeddings must be passed."
patch_embeds = self.patch_embedding_projection(patch_embeds)
if self.cross_attn_k is not None:
patch_embeds = patch_embeds.reshape(
bs, patch_embeds.shape[1] * self.cross_attn_k, self.dim
)
if patch_embeds is not None and not self.cross_attn_decoder:
h = h + patch_embeds
freqs_cis = self.rope(seqlen=seqlen) if self.use_rope else None
h = F.dropout(h, p=self.dropout, training=self.training)
for i, layer in enumerate(self.layers):
if self.cross_attn_decoder and (
i == 0 or self.cross_attn_all_layers_decoder
):
# Use cross attention to extract info from patch_embeds into h
h_cross = self.cross_attn_layers[i](
x=h,
kv=patch_embeds,
mask=cross_mask,
)
h = h + h_cross
h = layer(h, mask=mask, freq_cis=freqs_cis, attn_impl=self.efficient_attn)
h_preds = self.norm(h)
h_preds = F.dropout(h_preds, p=self.dropout, training=self.training)
h_preds = self.output(h_preds)
h_preds = h_preds.float()
return h_preds, cache