blt/apps/main/eval.py

355 lines
12 KiB
Python
Raw Permalink Normal View History

2024-12-12 23:32:30 +00:00
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import logging
import os
from collections import defaultdict
from dataclasses import asdict, dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any, List, Optional, Tuple, Union
import torch
from lingua.args import dump_config
from lingua.data import init_choice_state, setup_sources
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from omegaconf import OmegaConf
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.distributed import (
DistributedArgs,
dist_mean_dict,
get_global_rank,
get_world_size,
setup_torch_distributed,
)
from bytelatent.transformer import LMTransformer, LMTransformerArgs
from apps.main.generate import (
PackedCausalTransformerGenerator,
PackedCausalTransformerGeneratorArgs,
load_consolidated_model_and_tokenizer,
)
EVAL_FOLDER_NAME = "{:010d}"
logger = logging.getLogger()
@dataclass
class LMHarnessArgs:
tasks: Optional[List[Any]] = None
num_fewshot: Optional[int] = None
device: Optional[str] = None
use_cache: Optional[str] = None
cache_requests: bool = False
rewrite_requests_cache: bool = False
delete_requests_cache: bool = False
limit: Optional[Union[int, float]] = None
bootstrap_iters: int = 100000
check_integrity: bool = False
write_out: bool = False
log_samples: bool = True
system_instruction: Optional[str] = None
apply_chat_template: Union[bool, str] = False
fewshot_as_multiturn: bool = False
gen_kwargs: Optional[str] = None
verbosity: str = "INFO"
predict_only: bool = False
random_seed: int = 0
numpy_random_seed: int = 1234
torch_random_seed: int = 1234
fewshot_random_seed: int = 1234
@dataclass
class ValidationArgs:
max_steps: Optional[int] = (
None # If None the whole validation file is used -> /!\ This number of steps is gpu dependent (100 max steps on 8 gpus = 800 steps on 1 gpu)
)
use_val_from_train_src: bool = True # Use the validation set from training sources
root_dir: str = ""
sources: List[str] = field(default_factory=list) # Other sources to eval on
@dataclass
class EvalArgs:
name: str = "evals"
dump_dir: Optional[str] = None
metric_log_dir: Optional[str] = None
ckpt_dir: str = ""
generator: PackedCausalTransformerGeneratorArgs = field(
default_factory=PackedCausalTransformerGeneratorArgs
)
harness: Optional[LMHarnessArgs] = field(default_factory=LMHarnessArgs)
validation: Optional[ValidationArgs] = field(default_factory=ValidationArgs)
wandb: Optional[Any] = None
global_step: Optional[int] = None # for in-training evaluation
def all_dicts_same(dict_list):
if not dict_list: # Check if the list is empty
return True
# Compare each dictionary to the first one
first_dict = dict_list[0]
return all(d == first_dict for d in dict_list)
class MockAccelerator:
def gather(self, tensor):
l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
torch.distributed.all_gather(l, tensor)
return torch.stack(l)
def wait_for_everyone(self):
torch.distributed.barrier()
# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
def __init__(self, generator):
super().__init__()
self.generator = generator
self.accelerator = MockAccelerator()
self._rank = get_global_rank()
self._world_size = get_world_size()
self.device = generator.device
def generate_until(self, requests: List[Instance]) -> List[str]:
prompts, gen_args = zip(*[req.args for req in requests])
assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
gen_args = gen_args[0]
temperature = gen_args.get("temperature", 0.0)
top_p = gen_args.get("top_p", None)
top_k = gen_args.get("top_k", None)
until = gen_args.get("until", [])
self.generator.temperature = temperature
self.generator.top_p = top_p
self.generator.top_k = top_k
self.generator.until = until
generations, _, _ = self.generator.generate(prompts)
filtered_gen = []
for g in generations:
for e in until:
g = g.replace(e, "")
filtered_gen.append(g)
return filtered_gen
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
prompts, continuations = zip(*[req.args for req in requests])
inputs = [req.args[0] + req.args[1] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, greedy = self.generator.generate(inputs)
results = []
for p, ll, gr in zip(prompts, lls, greedy):
p_len = len(
self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
)
results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))
self.generator.max_gen_len = max_gen_len
return results
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
prompts = [req.args[0] for req in requests]
max_gen_len = self.generator.max_gen_len
# We temporarily lower max gen len
self.generator.max_gen_len = 1
_, lls, _ = self.generator.generate(prompts)
results = []
for ll in lls:
results.append((ll.sum().item(),))
self.generator.max_gen_len = max_gen_len
return results
def eval_on_val(generator, val_args: ValidationArgs, train_cfg):
srcs = {}
for src in val_args.sources:
path = os.path.join(val_args.root_dir, src)
srcs[path] = 1.0
for src in train_cfg.data.sources:
path = os.path.join(train_cfg.data.root_dir, src)
srcs[path] = 1.0
multi_state = init_choice_state(
"", srcs, 0, get_global_rank(), get_world_size(), "*.val.jsonl"
)
path_to_iter = setup_sources(multi_state)
max_gen_len = generator.max_gen_len
# We temporarily lower max gen len
generator.max_gen_len = 1
all_val_metrics = {}
for src in path_to_iter:
jsonl_iterator = path_to_iter[src]
texts = []
logger.info(f"Running validation on {src}...")
for step, (content, state) in enumerate(jsonl_iterator):
if state["current_iter"] > 0 or (
val_args.max_steps is not None and step >= val_args.max_steps
):
break
content_key = "text" if ("text" in content) else "content"
texts.append(content[content_key])
_, loglikelihood, _ = generator.generate(texts)
metrics = defaultdict(list)
for i, ll in enumerate(loglikelihood):
tmp = ll.sum().item()
metrics["nll"].append(tmp)
metrics["nll_per_token"].append(tmp / len(ll))
metrics["nll_per_char"].append(tmp / len(texts[i]))
metrics["avg_seqlen"].append(len(ll))
for m in metrics:
metrics[m] = sum(metrics[m]) / len(metrics[m])
metrics.update(dist_mean_dict(metrics))
logger.info(f"Validation on {src} done. Metrics: {metrics}")
name = os.path.basename(src)
if name in all_val_metrics:
logger.warning(
f"Duplicate source name {name}, path {src} in validation sources, renaming to {name}_1"
)
name = f"{name}_1"
all_val_metrics[name] = metrics
generator.max_gen_len = max_gen_len
return all_val_metrics
def launch_eval(cfg: EvalArgs):
if not torch.distributed.is_initialized():
setup_torch_distributed(DistributedArgs())
if (
Path(cfg.ckpt_dir).exists()
and (Path(cfg.ckpt_dir) / "params.json").exists()
and next(Path(cfg.ckpt_dir).glob("*.pth"), None) is not None
):
consolidate_path = Path(cfg.ckpt_dir)
else:
consolidate_path = Path(cfg.ckpt_dir) / CONSOLIDATE_FOLDER
if not consolidate_path.exists() and get_global_rank() == 0:
consolidate_path = consolidate_checkpoints(cfg.ckpt_dir)
Path(cfg.dump_dir).mkdir(parents=True, exist_ok=True)
dump_config(cfg, Path(cfg.dump_dir) / "config.yaml", log_config=False)
consolidate_path = str(consolidate_path)
torch.distributed.barrier()
logger.info("Loading model")
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
consolidate_path,
model_cls=LMTransformer,
model_args_cls=LMTransformerArgs,
)
logger.info("Model loaded")
model.eval()
generator = PackedCausalTransformerGenerator(cfg.generator, model, tokenizer)
wrap = EvalHarnessLM(generator)
results = simple_evaluate(wrap, **asdict(cfg.harness))
val_results = None
if cfg.validation:
val_results = eval_on_val(generator, cfg.validation, train_cfg)
if get_global_rank() == 0:
with open(Path(cfg.dump_dir) / "results.json", "w") as f:
f.write(json.dumps(results))
logger.info(f"All evaluation results: {results['results']}")
if val_results is not None:
with open(Path(cfg.dump_dir) / "validation.json", "w") as f:
f.write(json.dumps(val_results))
logger.info(f"All validation results: {val_results}")
if cfg.metric_log_dir and get_global_rank() == 0:
metric_log_path = Path(cfg.metric_log_dir) / "metrics.eval.jsonl"
logger.info(f"Writing metric logs to {metric_log_path}")
timestamp = {
"created_at": datetime.utcnow().isoformat(),
}
if cfg.global_step is not None:
timestamp["global_step"] = cfg.global_step
print(
json.dumps(timestamp | results["results"]),
file=open(metric_log_path, mode="a"),
flush=True,
)
val_log_path = Path(cfg.metric_log_dir) / "metrics.validation.jsonl"
if val_results is not None:
print(
json.dumps(timestamp | val_results),
file=open(val_log_path, mode="a"),
flush=True,
)
del generator
def main():
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
model: LMTransformerArgsgs
@dataclass
class LMTransformerArgsgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgsgs
or just name=tictac for top level attributes.
The behavior here is as follows:
1. We instantiate EvalArgs with its default values
2. We override those default values with the ones in the provided config file
3. We override the result with the additional arguments provided through command line
For example, if the config is the following
model:
dim: 128
n_layers: 4
and you call eval.py with eval.py model.dim=64
Then the final TrainArgs will have
model:
dim: 64
n_layers: 4
Plus all the default values in EvalArgs dataclass.
"""
cli_args = OmegaConf.from_cli()
file_cfg = OmegaConf.load(cli_args.config)
# We remove 'config' attribute from config as the underlying DataClass does not have it
del cli_args.config
default_cfg = OmegaConf.structured(EvalArgs())
cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
cfg = OmegaConf.to_object(cfg)
launch_eval(cfg)
if __name__ == "__main__":
main()