mirror of
https://github.com/Skyvern-AI/skyvern.git
synced 2025-09-15 09:49:46 +00:00
868 lines
33 KiB
Python
868 lines
33 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
import time
|
|
import uuid
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import typer
|
|
import uvicorn
|
|
from dotenv import load_dotenv, set_key
|
|
from mcp.server.fastmcp import FastMCP
|
|
|
|
from skyvern.agent import SkyvernAgent
|
|
from skyvern.config import settings
|
|
from skyvern.forge import app
|
|
from skyvern.forge.sdk.db.enums import OrganizationAuthTokenType
|
|
from skyvern.utils import detect_os, get_windows_appdata_roaming, migrate_db
|
|
|
|
load_dotenv()
|
|
|
|
cli_app = typer.Typer()
|
|
run_app = typer.Typer()
|
|
setup_app = typer.Typer()
|
|
cli_app.add_typer(run_app, name="run")
|
|
cli_app.add_typer(setup_app, name="setup")
|
|
mcp = FastMCP("Skyvern")
|
|
|
|
|
|
@mcp.tool()
|
|
async def skyvern_run_task(prompt: str, url: str) -> dict[str, str]:
|
|
"""Use Skyvern to execute anything in the browser. Useful for accomplishing tasks that require browser automation.
|
|
|
|
This tool uses Skyvern's browser automation to navigate websites and perform actions to achieve
|
|
the user's intended outcome. It can handle tasks like form filling, clicking buttons, data extraction,
|
|
and multi-step workflows.
|
|
|
|
It can even help you find updated data on the internet if your model information is outdated.
|
|
|
|
Args:
|
|
prompt: A natural language description of what needs to be accomplished (e.g. "Book a flight from
|
|
NYC to LA", "Sign up for the newsletter", "Find the price of item X", "Apply to a job")
|
|
url: The starting URL of the website where the task should be performed
|
|
"""
|
|
skyvern_agent = SkyvernAgent(
|
|
base_url=settings.SKYVERN_BASE_URL,
|
|
api_key=settings.SKYVERN_API_KEY,
|
|
extra_headers={"X-User-Agent": "skyvern-mcp"},
|
|
)
|
|
res = await skyvern_agent.run_task(prompt=prompt, url=url)
|
|
|
|
# TODO: It would be nice if we could return the task URL here
|
|
output = res.model_dump()["output"]
|
|
base_url = settings.SKYVERN_BASE_URL
|
|
run_history_url = (
|
|
"https://app.skyvern.com/history" if "skyvern.com" in base_url else "http://localhost:8080/history"
|
|
)
|
|
return {"output": output, "run_history_url": run_history_url}
|
|
|
|
|
|
def command_exists(command: str) -> bool:
|
|
return shutil.which(command) is not None
|
|
|
|
|
|
def run_command(command: str, check: bool = True) -> tuple[Optional[str], Optional[int]]:
|
|
try:
|
|
result = subprocess.run(command, shell=True, check=check, capture_output=True, text=True)
|
|
return result.stdout.strip(), result.returncode
|
|
except subprocess.CalledProcessError as e:
|
|
return None, e.returncode
|
|
|
|
|
|
def is_postgres_running() -> bool:
|
|
if command_exists("pg_isready"):
|
|
result, _ = run_command("pg_isready")
|
|
return result is not None and "accepting connections" in result
|
|
return False
|
|
|
|
|
|
def database_exists(dbname: str, user: str) -> bool:
|
|
check_db_command = f'psql {dbname} -U {user} -c "\\q"'
|
|
output, _ = run_command(check_db_command, check=False)
|
|
return output is not None
|
|
|
|
|
|
def create_database_and_user() -> None:
|
|
print("Creating database user and database...")
|
|
run_command("createuser skyvern")
|
|
run_command("createdb skyvern -O skyvern")
|
|
print("Database and user created successfully.")
|
|
|
|
|
|
def is_docker_running() -> bool:
|
|
if not command_exists("docker"):
|
|
return False
|
|
_, code = run_command("docker info", check=False)
|
|
return code == 0
|
|
|
|
|
|
def is_postgres_running_in_docker() -> bool:
|
|
_, code = run_command("docker ps | grep -q postgresql-container", check=False)
|
|
return code == 0
|
|
|
|
|
|
def is_postgres_container_exists() -> bool:
|
|
_, code = run_command("docker ps -a | grep -q postgresql-container", check=False)
|
|
return code == 0
|
|
|
|
|
|
def setup_postgresql() -> None:
|
|
print("Setting up PostgreSQL...")
|
|
|
|
if command_exists("psql") and is_postgres_running():
|
|
print("PostgreSQL is already running locally.")
|
|
if database_exists("skyvern", "skyvern"):
|
|
print("Database and user exist.")
|
|
else:
|
|
create_database_and_user()
|
|
return
|
|
|
|
if not is_docker_running():
|
|
print("Docker is not running or not installed. Please install or start Docker and try again.")
|
|
exit(1)
|
|
|
|
if is_postgres_running_in_docker():
|
|
print("PostgreSQL is already running in a Docker container.")
|
|
else:
|
|
print("Attempting to install PostgreSQL via Docker...")
|
|
if not is_postgres_container_exists():
|
|
run_command(
|
|
"docker run --name postgresql-container -e POSTGRES_HOST_AUTH_METHOD=trust -d -p 5432:5432 postgres:14"
|
|
)
|
|
else:
|
|
run_command("docker start postgresql-container")
|
|
print("PostgreSQL has been installed and started using Docker.")
|
|
|
|
print("Waiting for PostgreSQL to start...")
|
|
time.sleep(20)
|
|
|
|
_, code = run_command('docker exec postgresql-container psql -U postgres -c "\\du" | grep -q skyvern', check=False)
|
|
if code == 0:
|
|
print("Database user exists.")
|
|
else:
|
|
print("Creating database user...")
|
|
run_command("docker exec postgresql-container createuser -U postgres skyvern")
|
|
|
|
_, code = run_command(
|
|
"docker exec postgresql-container psql -U postgres -lqt | cut -d \\| -f 1 | grep -qw skyvern", check=False
|
|
)
|
|
if code == 0:
|
|
print("Database exists.")
|
|
else:
|
|
print("Creating database...")
|
|
run_command("docker exec postgresql-container createdb -U postgres skyvern -O skyvern")
|
|
print("Database and user created successfully.")
|
|
|
|
|
|
def update_or_add_env_var(key: str, value: str) -> None:
|
|
"""Update or add environment variable in .env file."""
|
|
|
|
env_path = Path(".env")
|
|
if not env_path.exists():
|
|
env_path.touch()
|
|
# Write default environment variables using dotenv
|
|
defaults = {
|
|
"ENV": "local",
|
|
"ENABLE_OPENAI": "false",
|
|
"OPENAI_API_KEY": "",
|
|
"ENABLE_ANTHROPIC": "false",
|
|
"ANTHROPIC_API_KEY": "",
|
|
"ENABLE_AZURE": "false",
|
|
"AZURE_DEPLOYMENT": "",
|
|
"AZURE_API_KEY": "",
|
|
"AZURE_API_BASE": "",
|
|
"AZURE_API_VERSION": "",
|
|
"ENABLE_AZURE_GPT4O_MINI": "false",
|
|
"AZURE_GPT4O_MINI_DEPLOYMENT": "",
|
|
"AZURE_GPT4O_MINI_API_KEY": "",
|
|
"AZURE_GPT4O_MINI_API_BASE": "",
|
|
"AZURE_GPT4O_MINI_API_VERSION": "",
|
|
"ENABLE_GEMINI": "false",
|
|
"GEMINI_API_KEY": "",
|
|
"ENABLE_NOVITA": "false",
|
|
"NOVITA_API_KEY": "",
|
|
"LLM_KEY": "",
|
|
"SECONDARY_LLM_KEY": "",
|
|
"BROWSER_TYPE": "chromium-headful",
|
|
"MAX_SCRAPING_RETRIES": "0",
|
|
"VIDEO_PATH": "./videos",
|
|
"BROWSER_ACTION_TIMEOUT_MS": "5000",
|
|
"MAX_STEPS_PER_RUN": "50",
|
|
"LOG_LEVEL": "INFO",
|
|
"DATABASE_STRING": "postgresql+psycopg://skyvern@localhost/skyvern",
|
|
"PORT": "8000",
|
|
"ANALYTICS_ID": "anonymous",
|
|
"ENABLE_LOG_ARTIFACTS": "false",
|
|
}
|
|
for k, v in defaults.items():
|
|
set_key(env_path, k, v)
|
|
|
|
load_dotenv(env_path)
|
|
set_key(env_path, key, value)
|
|
|
|
|
|
def setup_llm_providers() -> None:
|
|
"""Configure Large Language Model (LLM) Providers."""
|
|
print("Configuring Large Language Model (LLM) Providers...")
|
|
print("Note: All information provided here will be stored only on your local machine.")
|
|
model_options = []
|
|
|
|
# OpenAI Configuration
|
|
print("To enable OpenAI, you must have an OpenAI API key.")
|
|
enable_openai = input("Do you want to enable OpenAI (y/n)? ").lower() == "y"
|
|
if enable_openai:
|
|
openai_api_key = input("Enter your OpenAI API key: ")
|
|
if not openai_api_key:
|
|
print("Error: OpenAI API key is required.")
|
|
print("OpenAI will not be enabled.")
|
|
else:
|
|
update_or_add_env_var("OPENAI_API_KEY", openai_api_key)
|
|
update_or_add_env_var("ENABLE_OPENAI", "true")
|
|
model_options.extend(
|
|
[
|
|
"OPENAI_GPT4_1",
|
|
"OPENAI_GPT4_1_MINI",
|
|
"OPENAI_GPT4_1_NANO",
|
|
"OPENAI_GPT4O",
|
|
]
|
|
)
|
|
else:
|
|
update_or_add_env_var("ENABLE_OPENAI", "false")
|
|
|
|
# Anthropic Configuration
|
|
print("To enable Anthropic, you must have an Anthropic API key.")
|
|
enable_anthropic = input("Do you want to enable Anthropic (y/n)? ").lower() == "y"
|
|
if enable_anthropic:
|
|
anthropic_api_key = input("Enter your Anthropic API key: ")
|
|
if not anthropic_api_key:
|
|
print("Error: Anthropic API key is required.")
|
|
print("Anthropic will not be enabled.")
|
|
else:
|
|
update_or_add_env_var("ANTHROPIC_API_KEY", anthropic_api_key)
|
|
update_or_add_env_var("ENABLE_ANTHROPIC", "true")
|
|
model_options.extend(
|
|
[
|
|
"ANTHROPIC_CLAUDE3.5_SONNET",
|
|
"ANTHROPIC_CLAUDE3.7_SONNET",
|
|
]
|
|
)
|
|
else:
|
|
update_or_add_env_var("ENABLE_ANTHROPIC", "false")
|
|
|
|
# Azure Configuration
|
|
print("To enable Azure, you must have an Azure deployment name, API key, base URL, and API version.")
|
|
enable_azure = input("Do you want to enable Azure (y/n)? ").lower() == "y"
|
|
if enable_azure:
|
|
azure_deployment = input("Enter your Azure deployment name: ")
|
|
azure_api_key = input("Enter your Azure API key: ")
|
|
azure_api_base = input("Enter your Azure API base URL: ")
|
|
azure_api_version = input("Enter your Azure API version: ")
|
|
if not all([azure_deployment, azure_api_key, azure_api_base, azure_api_version]):
|
|
print("Error: All Azure fields must be populated.")
|
|
print("Azure will not be enabled.")
|
|
else:
|
|
update_or_add_env_var("AZURE_DEPLOYMENT", azure_deployment)
|
|
update_or_add_env_var("AZURE_API_KEY", azure_api_key)
|
|
update_or_add_env_var("AZURE_API_BASE", azure_api_base)
|
|
update_or_add_env_var("AZURE_API_VERSION", azure_api_version)
|
|
update_or_add_env_var("ENABLE_AZURE", "true")
|
|
model_options.append("AZURE_OPENAI_GPT4O")
|
|
else:
|
|
update_or_add_env_var("ENABLE_AZURE", "false")
|
|
|
|
# Gemini Configuration
|
|
print("To enable Gemini, you must have an Gemini API key.")
|
|
enable_gemini = input("Do you want to enable Gemini (y/n)? ").lower() == "y"
|
|
if enable_gemini:
|
|
gemini_api_key = input("Enter your Gemini API key: ")
|
|
if not gemini_api_key:
|
|
print("Error: Gemini API key is required.")
|
|
print("Gemini will not be enabled.")
|
|
else:
|
|
update_or_add_env_var("GEMINI_API_KEY", gemini_api_key)
|
|
update_or_add_env_var("ENABLE_GEMINI", "true")
|
|
model_options.extend(
|
|
[
|
|
"GEMINI_FLASH_2_0",
|
|
"GEMINI_FLASH_2_0_LITE",
|
|
"GEMINI_2.5_PRO_PREVIEW_03_25",
|
|
"GEMINI_2.5_PRO_EXP_03_25",
|
|
]
|
|
)
|
|
else:
|
|
update_or_add_env_var("ENABLE_GEMINI", "false")
|
|
|
|
# Novita AI Configuration
|
|
print("To enable Novita AI, you must have an Novita AI API key.")
|
|
enable_novita = input("Do you want to enable Novita AI (y/n)? ").lower() == "y"
|
|
if enable_novita:
|
|
novita_api_key = input("Enter your Novita AI API key: ")
|
|
if not novita_api_key:
|
|
print("Error: Novita AI API key is required.")
|
|
print("Novita AI will not be enabled.")
|
|
else:
|
|
update_or_add_env_var("NOVITA_API_KEY", novita_api_key)
|
|
update_or_add_env_var("ENABLE_NOVITA", "true")
|
|
model_options.extend(
|
|
[
|
|
"NOVITA_DEEPSEEK_R1",
|
|
"NOVITA_DEEPSEEK_V3",
|
|
"NOVITA_LLAMA_3_3_70B",
|
|
"NOVITA_LLAMA_3_2_1B",
|
|
"NOVITA_LLAMA_3_2_3B",
|
|
"NOVITA_LLAMA_3_2_11B_VISION",
|
|
"NOVITA_LLAMA_3_1_8B",
|
|
"NOVITA_LLAMA_3_1_70B",
|
|
"NOVITA_LLAMA_3_1_405B",
|
|
"NOVITA_LLAMA_3_8B",
|
|
"NOVITA_LLAMA_3_70B",
|
|
]
|
|
)
|
|
else:
|
|
update_or_add_env_var("ENABLE_NOVITA", "false")
|
|
|
|
# Model Selection
|
|
if not model_options:
|
|
print(
|
|
"No LLM providers enabled. You won't be able to run Skyvern unless you enable at least one provider. You can re-run this script to enable providers or manually update the .env file."
|
|
)
|
|
else:
|
|
print("Available LLM models based on your selections:")
|
|
for i, model in enumerate(model_options, 1):
|
|
print(f"{i}. {model}")
|
|
|
|
while True:
|
|
try:
|
|
model_choice = int(input(f"Choose a model by number (e.g., 1 for {model_options[0]}): "))
|
|
if 1 <= model_choice <= len(model_options):
|
|
break
|
|
print(f"Please enter a number between 1 and {len(model_options)}")
|
|
except ValueError:
|
|
print("Please enter a valid number")
|
|
|
|
chosen_model = model_options[model_choice - 1]
|
|
print(f"Chosen LLM Model: {chosen_model}")
|
|
update_or_add_env_var("LLM_KEY", chosen_model)
|
|
|
|
print("LLM provider configurations updated in .env.")
|
|
|
|
|
|
def get_default_chrome_location(host_system: str) -> str:
|
|
"""Get the default Chrome/Chromium location based on OS."""
|
|
if host_system == "darwin":
|
|
return "/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
|
|
elif host_system == "linux":
|
|
# Common Linux locations
|
|
chrome_paths = ["/usr/bin/google-chrome", "/usr/bin/chromium", "/usr/bin/chromium-browser"]
|
|
for path in chrome_paths:
|
|
if os.path.exists(path):
|
|
return path
|
|
return "/usr/bin/google-chrome" # default if not found
|
|
elif host_system == "wsl":
|
|
return "/mnt/c/Program Files/Google/Chrome/Application/chrome.exe"
|
|
else:
|
|
return "C:\\Program Files\\Google\\Chrome\\Application\\chrome.exe"
|
|
|
|
|
|
def setup_browser_config() -> tuple[str, Optional[str], Optional[str]]:
|
|
"""Configure browser settings for Skyvern."""
|
|
print("\nConfiguring web browser for scraping...")
|
|
browser_types = ["chromium-headless", "chromium-headful", "cdp-connect"]
|
|
|
|
for i, browser_type in enumerate(browser_types, 1):
|
|
print(f"{i}. {browser_type}")
|
|
if browser_type == "chromium-headless":
|
|
print(" - Runs Chrome in headless mode (no visible window)")
|
|
elif browser_type == "chromium-headful":
|
|
print(" - Runs Chrome with visible window")
|
|
elif browser_type == "cdp-connect":
|
|
print(" - Connects to an existing Chrome instance")
|
|
print(" - Requires Chrome to be running with remote debugging enabled")
|
|
|
|
while True:
|
|
try:
|
|
choice = int(input("\nChoose browser type (1-3): "))
|
|
if 1 <= choice <= len(browser_types):
|
|
selected_browser = browser_types[choice - 1]
|
|
break
|
|
print(f"Please enter a number between 1 and {len(browser_types)}")
|
|
except ValueError:
|
|
print("Please enter a valid number")
|
|
|
|
browser_location = None
|
|
remote_debugging_url = None
|
|
|
|
if selected_browser == "cdp-connect":
|
|
host_system = detect_os()
|
|
default_location = get_default_chrome_location(host_system)
|
|
print(f"\nDefault Chrome location for your system: {default_location}")
|
|
browser_location = input("Enter Chrome executable location (press Enter to use default): ").strip()
|
|
if not browser_location:
|
|
browser_location = default_location
|
|
|
|
if not os.path.exists(browser_location):
|
|
print(f"Warning: Chrome not found at {browser_location}. Please verify the location is correct.")
|
|
|
|
print("\nTo use CDP connection, Chrome must be running with remote debugging enabled.")
|
|
print("Example: chrome --remote-debugging-port=9222")
|
|
print("Default debugging URL: http://localhost:9222")
|
|
remote_debugging_url = input("Enter remote debugging URL (press Enter for default): ").strip()
|
|
if not remote_debugging_url:
|
|
remote_debugging_url = "http://localhost:9222"
|
|
|
|
return selected_browser, browser_location, remote_debugging_url
|
|
|
|
|
|
async def _setup_local_organization() -> str:
|
|
"""
|
|
Returns the API key for the local organization generated
|
|
"""
|
|
skyvern_agent = SkyvernAgent(
|
|
base_url=settings.SKYVERN_BASE_URL,
|
|
api_key=settings.SKYVERN_API_KEY,
|
|
)
|
|
organization = await skyvern_agent.get_organization()
|
|
|
|
org_auth_token = await app.DATABASE.get_valid_org_auth_token(
|
|
organization_id=organization.organization_id,
|
|
token_type=OrganizationAuthTokenType.api,
|
|
)
|
|
return org_auth_token.token if org_auth_token else ""
|
|
|
|
|
|
@cli_app.command(name="migrate")
|
|
def migrate() -> None:
|
|
migrate_db()
|
|
|
|
|
|
def get_claude_config_path(host_system: str) -> str:
|
|
"""Get the Claude Desktop config file path for the current OS."""
|
|
if host_system == "wsl":
|
|
roaming_path = get_windows_appdata_roaming()
|
|
if roaming_path is None:
|
|
raise RuntimeError("Could not locate Windows AppData\\Roaming path from WSL")
|
|
return os.path.join(str(roaming_path), "Claude", "claude_desktop_config.json")
|
|
|
|
base_paths = {
|
|
"darwin": ["~/Library/Application Support/Claude"],
|
|
"linux": ["~/.config/Claude", "~/.local/share/Claude", "~/Claude"],
|
|
}
|
|
|
|
if host_system == "darwin":
|
|
base_path = os.path.expanduser(base_paths["darwin"][0])
|
|
return os.path.join(base_path, "claude_desktop_config.json")
|
|
|
|
if host_system == "linux":
|
|
for path in base_paths["linux"]:
|
|
full_path = os.path.expanduser(path)
|
|
if os.path.exists(full_path):
|
|
return os.path.join(full_path, "claude_desktop_config.json")
|
|
|
|
raise Exception(f"Unsupported host system: {host_system}")
|
|
|
|
|
|
def get_claude_command_config(
|
|
host_system: str, path_to_env: str, path_to_server: str, env_vars: str
|
|
) -> tuple[str, list]:
|
|
"""Get the command and arguments for Claude Desktop configuration."""
|
|
base_env_vars = f"{env_vars} ENABLE_OPENAI=true LOG_LEVEL=CRITICAL"
|
|
artifacts_path = os.path.join(os.path.abspath("./"), "artifacts")
|
|
|
|
if host_system == "wsl":
|
|
env_vars = f"{base_env_vars} ARTIFACT_STORAGE_PATH={artifacts_path} BROWSER_TYPE=chromium-headless"
|
|
return "wsl.exe", ["bash", "-c", f"{env_vars} {path_to_env} {path_to_server}"]
|
|
|
|
if host_system in ["linux", "darwin"]:
|
|
env_vars = f"{base_env_vars} ARTIFACT_STORAGE_PATH={artifacts_path}"
|
|
return path_to_env, [path_to_server]
|
|
|
|
raise Exception(f"Unsupported host system: {host_system}")
|
|
|
|
|
|
def is_claude_desktop_installed(host_system: str) -> bool:
|
|
"""Check if Claude Desktop is installed by looking for its config directory."""
|
|
try:
|
|
config_path = os.path.dirname(get_claude_config_path(host_system))
|
|
return os.path.exists(config_path)
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def get_cursor_config_path(host_system: str) -> str:
|
|
"""Get the Cursor config file path for the current OS."""
|
|
if host_system == "wsl":
|
|
roaming_path = get_windows_appdata_roaming()
|
|
if roaming_path is None:
|
|
raise RuntimeError("Could not locate Windows AppData\\Roaming path from WSL")
|
|
return os.path.join(str(roaming_path), ".cursor", "mcp.json")
|
|
|
|
# For both darwin and linux, use ~/.cursor/mcp.json
|
|
return os.path.expanduser("~/.cursor/mcp.json")
|
|
|
|
|
|
def is_cursor_installed(host_system: str) -> bool:
|
|
"""Check if Cursor is installed by looking for its config directory."""
|
|
try:
|
|
config_dir = os.path.expanduser("~/.cursor")
|
|
return os.path.exists(config_dir)
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def is_windsurf_installed(host_system: str) -> bool:
|
|
"""Check if Windsurf is installed by looking for its config directory."""
|
|
try:
|
|
config_dir = os.path.expanduser("~/.codeium/windsurf")
|
|
return os.path.exists(config_dir)
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def get_windsurf_config_path(host_system: str) -> str:
|
|
"""Get the Windsurf config file path for the current OS."""
|
|
return os.path.expanduser("~/.codeium/windsurf/mcp_config.json")
|
|
|
|
|
|
def setup_windsurf_config(host_system: str, path_to_env: str) -> bool:
|
|
"""Set up Windsurf configuration for Skyvern MCP."""
|
|
if not is_windsurf_installed(host_system):
|
|
return False
|
|
|
|
load_dotenv(".env")
|
|
skyvern_base_url = os.environ.get("SKYVERN_BASE_URL", "")
|
|
skyvern_api_key = os.environ.get("SKYVERN_API_KEY", "")
|
|
if not skyvern_base_url or not skyvern_api_key:
|
|
print(
|
|
"Error: SKYVERN_BASE_URL and SKYVERN_API_KEY must be set in .env file to set up Windsurf MCP. Please open {path_windsurf_config} and set the these variables manually."
|
|
)
|
|
|
|
try:
|
|
path_windsurf_config = get_windsurf_config_path(host_system)
|
|
os.makedirs(os.path.dirname(path_windsurf_config), exist_ok=True)
|
|
if not os.path.exists(path_windsurf_config):
|
|
with open(path_windsurf_config, "w") as f:
|
|
json.dump({"mcpServers": {}}, f, indent=2)
|
|
|
|
windsurf_config: dict = {"mcpServers": {}}
|
|
|
|
if os.path.exists(path_windsurf_config):
|
|
try:
|
|
with open(path_windsurf_config, "r") as f:
|
|
windsurf_config = json.load(f)
|
|
windsurf_config["mcpServers"].pop("Skyvern", None)
|
|
windsurf_config["mcpServers"]["Skyvern"] = {
|
|
"env": {
|
|
"SKYVERN_BASE_URL": skyvern_base_url,
|
|
"SKYVERN_API_KEY": skyvern_api_key,
|
|
},
|
|
"command": path_to_env,
|
|
"args": ["-m", "skyvern", "run", "mcp"],
|
|
}
|
|
except json.JSONDecodeError:
|
|
print(
|
|
f"JSONDecodeError when reading Error configuring Windsurf. Please open {path_windsurf_config} and fix the json config first."
|
|
)
|
|
return False
|
|
|
|
with open(path_windsurf_config, "w") as f:
|
|
json.dump(windsurf_config, f, indent=2)
|
|
except Exception as e:
|
|
print(f"Error configuring Windsurf: {e}")
|
|
return False
|
|
|
|
print(f"Windsurf MCP configuration updated successfully at {path_windsurf_config}.")
|
|
return True
|
|
|
|
|
|
def setup_mcp_config() -> str:
|
|
"""
|
|
return the path to the python environment
|
|
"""
|
|
# Try to find Python in this order: python, python3, python3.12, python3.11, python3.10, python3.9
|
|
python_paths = []
|
|
for python_cmd in ["python", "python3.11"]:
|
|
python_path = shutil.which(python_cmd)
|
|
if python_path:
|
|
python_paths.append((python_cmd, python_path))
|
|
|
|
if not python_paths:
|
|
print("Error: Could not find any Python installation. Please install Python 3.11 first.")
|
|
path_to_env = typer.prompt(
|
|
"Enter the full path to your python 3.11 environment. For example in MacOS if you installed it using Homebrew, it would be /opt/homebrew/bin/python3.11"
|
|
)
|
|
else:
|
|
# Show the first found Python as default
|
|
_, default_path = python_paths[0]
|
|
path_to_env = default_path
|
|
return path_to_env
|
|
|
|
|
|
def setup_claude_desktop_config(host_system: str, path_to_env: str) -> bool:
|
|
"""Set up Claude Desktop configuration with given command and args."""
|
|
if not is_claude_desktop_installed(host_system):
|
|
print("Claude Desktop is not installed. Please install it first.")
|
|
return False
|
|
|
|
try:
|
|
path_claude_config = get_claude_config_path(host_system)
|
|
|
|
os.makedirs(os.path.dirname(path_claude_config), exist_ok=True)
|
|
if not os.path.exists(path_claude_config):
|
|
with open(path_claude_config, "w") as f:
|
|
json.dump({"mcpServers": {}}, f, indent=2)
|
|
|
|
# Read environment variables from .env file
|
|
load_dotenv(".env")
|
|
skyvern_base_url = os.environ.get("SKYVERN_BASE_URL", "")
|
|
skyvern_api_key = os.environ.get("SKYVERN_API_KEY", "")
|
|
|
|
if not skyvern_base_url or not skyvern_api_key:
|
|
print("Error: SKYVERN_BASE_URL and SKYVERN_API_KEY must be set in .env file")
|
|
|
|
with open(path_claude_config, "r") as f:
|
|
claude_config = json.load(f)
|
|
claude_config["mcpServers"].pop("Skyvern", None)
|
|
claude_config["mcpServers"]["Skyvern"] = {
|
|
"env": {
|
|
"SKYVERN_BASE_URL": skyvern_base_url,
|
|
"SKYVERN_API_KEY": skyvern_api_key,
|
|
},
|
|
"command": path_to_env,
|
|
"args": ["-m", "skyvern", "run", "mcp"],
|
|
}
|
|
|
|
with open(path_claude_config, "w") as f:
|
|
json.dump(claude_config, f, indent=2)
|
|
|
|
print(f"Claude Desktop MCP configuration updated successfully at {path_claude_config}.")
|
|
return True
|
|
|
|
except Exception as e:
|
|
print(f"Error configuring Claude Desktop: {e}")
|
|
return False
|
|
|
|
|
|
def setup_cursor_config(host_system: str, path_to_env: str) -> bool:
|
|
"""Set up Cursor configuration with given command and args."""
|
|
if not is_cursor_installed(host_system):
|
|
return False
|
|
|
|
try:
|
|
path_cursor_config = get_cursor_config_path(host_system)
|
|
|
|
os.makedirs(os.path.dirname(path_cursor_config), exist_ok=True)
|
|
if not os.path.exists(path_cursor_config):
|
|
with open(path_cursor_config, "w") as f:
|
|
json.dump({"mcpServers": {}}, f, indent=2)
|
|
|
|
load_dotenv(".env")
|
|
skyvern_base_url = os.environ.get("SKYVERN_BASE_URL", "")
|
|
skyvern_api_key = os.environ.get("SKYVERN_API_KEY", "")
|
|
|
|
if not skyvern_base_url or not skyvern_api_key:
|
|
print(
|
|
f"Error: SKYVERN_BASE_URL and SKYVERN_API_KEY must be set in .env file to set up Cursor MCP. Please open {path_cursor_config} and set the these variables manually."
|
|
)
|
|
|
|
cursor_config: dict = {"mcpServers": {}}
|
|
|
|
if os.path.exists(path_cursor_config):
|
|
try:
|
|
with open(path_cursor_config, "r") as f:
|
|
cursor_config = json.load(f)
|
|
cursor_config["mcpServers"].pop("Skyvern", None)
|
|
cursor_config["mcpServers"]["Skyvern"] = {
|
|
"env": {
|
|
"SKYVERN_BASE_URL": skyvern_base_url,
|
|
"SKYVERN_API_KEY": skyvern_api_key,
|
|
},
|
|
"command": path_to_env,
|
|
"args": ["-m", "skyvern", "run", "mcp"],
|
|
}
|
|
except json.JSONDecodeError:
|
|
print(
|
|
f"JSONDecodeError when reading Error configuring Cursor. Please open {path_cursor_config} and fix the json config first."
|
|
)
|
|
return False
|
|
|
|
with open(path_cursor_config, "w") as f:
|
|
json.dump(cursor_config, f, indent=2)
|
|
|
|
print(f"Cursor MCP configuration updated successfully at {path_cursor_config}")
|
|
return True
|
|
|
|
except Exception as e:
|
|
print(f"Error configuring Cursor: {e}")
|
|
return False
|
|
|
|
|
|
@setup_app.command(name="mcp")
|
|
def setup_mcp() -> None:
|
|
"""Configure MCP for different Skyvern deployments."""
|
|
host_system = detect_os()
|
|
|
|
path_to_env = setup_mcp_config()
|
|
|
|
# Configure both Claude Desktop and Cursor
|
|
claude_response = input("Would you like to set up MCP integration for Claude Desktop? (y/n) [y]: ").strip().lower()
|
|
if not claude_response or claude_response == "y":
|
|
setup_claude_desktop_config(host_system, path_to_env)
|
|
|
|
cursor_response = input("Would you like to set up MCP integration for Cursor? (y/n) [y]: ").strip().lower()
|
|
if not cursor_response or cursor_response == "y":
|
|
setup_cursor_config(host_system, path_to_env)
|
|
|
|
windsurf_response = input("Would you like to set up MCP integration for Windsurf? (y/n) [y]: ").strip().lower()
|
|
if not windsurf_response or windsurf_response == "y":
|
|
setup_windsurf_config(host_system, path_to_env)
|
|
|
|
|
|
@run_app.command(name="server")
|
|
def run_server() -> None:
|
|
load_dotenv()
|
|
load_dotenv(".env")
|
|
from skyvern.config import settings
|
|
|
|
port = settings.PORT
|
|
uvicorn.run(
|
|
"skyvern.forge.api_app:app",
|
|
host="0.0.0.0",
|
|
port=port,
|
|
log_level="info",
|
|
)
|
|
|
|
|
|
@run_app.command(name="ui")
|
|
def run_ui() -> None:
|
|
# FIXME: This is untested and may not work
|
|
"""Run the Skyvern UI server."""
|
|
# Check for and handle any existing process on port 8080
|
|
try:
|
|
result = subprocess.run("lsof -t -i :8080", shell=True, capture_output=True, text=True, check=False)
|
|
if result.stdout.strip():
|
|
response = input("Process already running on port 8080. Kill it? (y/n) [y]: ").strip().lower()
|
|
if not response or response == "y":
|
|
subprocess.run("lsof -t -i :8080 | xargs kill", shell=True, check=False)
|
|
else:
|
|
print("UI server not started. Process already running on port 8080.")
|
|
return
|
|
except Exception:
|
|
pass
|
|
|
|
# Get the frontend directory path relative to this file
|
|
current_dir = Path(__file__).parent.parent.parent
|
|
frontend_dir = current_dir / "skyvern-frontend"
|
|
if not frontend_dir.exists():
|
|
print(f"[ERROR] Skyvern Frontend directory not found at {frontend_dir}. Are you in the right repo?")
|
|
return
|
|
|
|
if not (frontend_dir / ".env").exists():
|
|
shutil.copy(frontend_dir / ".env.example", frontend_dir / ".env")
|
|
# Update VITE_SKYVERN_API_KEY in frontend .env with SKYVERN_API_KEY from main .env
|
|
main_env_path = current_dir / ".env"
|
|
if main_env_path.exists():
|
|
load_dotenv(main_env_path)
|
|
skyvern_api_key = os.getenv("SKYVERN_API_KEY")
|
|
if skyvern_api_key:
|
|
frontend_env_path = frontend_dir / ".env"
|
|
set_key(str(frontend_env_path), "VITE_SKYVERN_API_KEY", skyvern_api_key)
|
|
else:
|
|
print("[ERROR] SKYVERN_API_KEY not found in .env file")
|
|
else:
|
|
print("[ERROR] .env file not found")
|
|
|
|
print("Successfully set up frontend .env file")
|
|
|
|
# Change to frontend directory
|
|
os.chdir(frontend_dir)
|
|
|
|
# Run npm install and start
|
|
try:
|
|
subprocess.run("npm install --silent", shell=True, check=True)
|
|
subprocess.run("npm run start", shell=True, check=True)
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Error running UI server: {e}")
|
|
return
|
|
|
|
|
|
@run_app.command(name="mcp")
|
|
def run_mcp() -> None:
|
|
"""Run the MCP server."""
|
|
mcp.run(transport="stdio")
|
|
|
|
|
|
@cli_app.command(name="init")
|
|
def init() -> None:
|
|
run_local_str = (
|
|
input("Would you like to run Skyvern locally or in the cloud? (local/cloud) [cloud]: ").strip().lower()
|
|
)
|
|
run_local = run_local_str == "local" if run_local_str else False
|
|
|
|
if run_local:
|
|
setup_postgresql()
|
|
api_key = asyncio.run(_setup_local_organization())
|
|
|
|
if os.path.exists(".env"):
|
|
print(".env file already exists, skipping initialization.")
|
|
redo_llm_setup = input("Do you want to go through LLM provider setup again (y/n)? ")
|
|
if redo_llm_setup.lower() != "y":
|
|
return
|
|
|
|
print("Initializing .env file...")
|
|
setup_llm_providers()
|
|
|
|
# Configure browser settings
|
|
browser_type, browser_location, remote_debugging_url = setup_browser_config()
|
|
update_or_add_env_var("BROWSER_TYPE", browser_type)
|
|
if browser_location:
|
|
update_or_add_env_var("CHROME_EXECUTABLE_PATH", browser_location)
|
|
if remote_debugging_url:
|
|
update_or_add_env_var("BROWSER_REMOTE_DEBUGGING_URL", remote_debugging_url)
|
|
|
|
print("Defaulting Skyvern Base URL to: http://localhost:8000")
|
|
update_or_add_env_var("SKYVERN_BASE_URL", "http://localhost:8000")
|
|
|
|
else:
|
|
base_url = input("Enter Skyvern base URL (press Enter for https://api.skyvern.com): ").strip()
|
|
if not base_url:
|
|
base_url = "https://api.skyvern.com"
|
|
|
|
print("To get your API key:")
|
|
print("1. Create an account at https://app.skyvern.com")
|
|
print("2. Go to Settings")
|
|
print("3. Copy your API key")
|
|
api_key = input("Enter your Skyvern API key: ").strip()
|
|
if not api_key:
|
|
print("API key is required")
|
|
api_key = input("Enter your Skyvern API key: ").strip()
|
|
|
|
update_or_add_env_var("SKYVERN_BASE_URL", base_url)
|
|
|
|
# Ask for email or generate UUID
|
|
analytics_id = input("Please enter your email for analytics (press enter to skip): ")
|
|
if not analytics_id:
|
|
analytics_id = str(uuid.uuid4())
|
|
|
|
update_or_add_env_var("ANALYTICS_ID", analytics_id)
|
|
update_or_add_env_var("SKYVERN_API_KEY", api_key)
|
|
print(".env file has been initialized.")
|
|
|
|
# Ask if user wants to configure MCP server
|
|
configure_mcp = input("\nWould you like to configure the MCP server (y/n)? ").lower() == "y"
|
|
if configure_mcp:
|
|
setup_mcp()
|
|
print("\nMCP server configuration completed.")
|
|
|
|
if not run_local:
|
|
print("\nMCP configuration is complete! Your AI applications are now ready to use Skyvern Cloud.")
|
|
|
|
if run_local:
|
|
print("\nInstalling Chromium browser...")
|
|
subprocess.run(["playwright", "install", "chromium"], check=True)
|
|
print("Chromium installation complete.")
|
|
|
|
print("\nTo start using Skyvern, run:")
|
|
print(" skyvern run server")
|