mirror of
https://github.com/Skyvern-AI/skyvern.git
synced 2025-09-01 18:20:06 +00:00
108 lines
5.3 KiB
YAML
108 lines
5.3 KiB
YAML
services:
|
|
postgres:
|
|
image: postgres:14-alpine
|
|
restart: always
|
|
# comment out if you want to externally connect DB
|
|
# ports:
|
|
# - 5432:5432
|
|
volumes:
|
|
- ./postgres-data:/var/lib/postgresql/data
|
|
environment:
|
|
- PGDATA=/var/lib/postgresql/data/pgdata
|
|
- POSTGRES_USER=skyvern
|
|
- POSTGRES_PASSWORD=skyvern
|
|
- POSTGRES_POSTGRES_DB=skyvern
|
|
healthcheck:
|
|
test: ["CMD-SHELL", "pg_isready -U skyvern"]
|
|
interval: 5s
|
|
timeout: 5s
|
|
retries: 5
|
|
|
|
skyvern:
|
|
image: public.ecr.aws/skyvern/skyvern:latest
|
|
restart: on-failure
|
|
# comment out if you want to externally call skyvern API
|
|
ports:
|
|
- 8000:8000
|
|
volumes:
|
|
- ./artifacts:/data/artifacts
|
|
- ./videos:/data/videos
|
|
- ./har:/data/har
|
|
- ./log:/data/log
|
|
- ./.streamlit:/app/.streamlit
|
|
# Uncomment the following two lines if you want to connect to any local changes
|
|
# - ./skyvern:/app/skyvern
|
|
# - ./alembic:/app/alembic
|
|
environment:
|
|
- DATABASE_STRING=postgresql+psycopg://skyvern:skyvern@postgres:5432/skyvern
|
|
- BROWSER_TYPE=chromium-headful
|
|
- ENABLE_OPENAI=true
|
|
- LLM_KEY=OPENAI_GPT4O
|
|
- OPENAI_API_KEY=<your_openai_key>
|
|
# If you want to use other LLM provider, like azure and anthropic:
|
|
# - ENABLE_ANTHROPIC=true
|
|
# - LLM_KEY=ANTHROPIC_CLAUDE3.5_SONNET
|
|
# - ANTHROPIC_API_KEY=<your_anthropic_key>
|
|
# Microsoft Azure OpenAI support:
|
|
# If you'd like to use Microsoft Azure OpenAI as your managed LLM service integration with Skyvern, use the environment variables below.
|
|
# In your Microsoft Azure subscription, you will need to provision the OpenAI service and deploy a model, in order to utilize it.
|
|
# 1. Login to the Azure Portal
|
|
# 2. Create an Azure Resource Group
|
|
# 3. Create an OpenAI resource in the Resource Group (choose a region and pricing tier)
|
|
# 4. From the OpenAI resource's Overview page, open the "Azure AI Foundry" portal (click the "Explore Azure AI Foundry Portal" button)
|
|
# 5. In Azure AI Foundry, click "Shared Resources" --> "Deployments"
|
|
# 6. Click "Deploy Model" --> "Deploy Base Model" --> select a model (specify this model "Deployment Name" value for the AZURE_DEPLOYMENT variable below)
|
|
# - ENABLE_AZURE=true
|
|
# - LLM_KEY=AZURE_OPENAI # Leave this value static, don't change it
|
|
# - AZURE_DEPLOYMENT=<your_azure_deployment> # Use the OpenAI model "Deployment Name" that you deployed, using the steps above
|
|
# - AZURE_API_KEY=<your_azure_api_key> # Copy and paste Key1 or Key2 from the OpenAI resource in Azure Portal
|
|
# - AZURE_API_BASE=<your_azure_api_base> # Copy and paste the "Endpoint" from the OpenAI resource in Azure Portal (eg. https://xyzxyzxyz.openai.azure.com/)
|
|
# - AZURE_API_VERSION=<your_azure_api_version> # Specify a valid Azure OpenAI data-plane API version (eg. 2024-08-01-preview) Docs: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference
|
|
# Amazon Bedrock Support:
|
|
# Amazon Bedrock is a managed service that enables you to invoke LLMs and bill them through your AWS account.
|
|
# To use Amazon Bedrock as the LLM provider for Skyvern, specify the following environment variables.
|
|
# 1. In the AWS IAM console, create a new AWS IAM User (name it whatever you want)
|
|
# 2. Assign the "AmazonBedrockFullAccess" policy to the user
|
|
# 3. Generate an IAM Access Key under the IAM User's Security Credentials tab
|
|
# 4. In the Amazon Bedrock console, go to "Model Access"
|
|
# 5. Click Modify Model Access button
|
|
# 6. Enable "Claude 3.5 Sonnet v2" and save changes
|
|
# - ENABLE_BEDROCK=true
|
|
# - LLM_KEY=BEDROCK_ANTHROPIC_CLAUDE3.5_SONNET # This is the Claude 3.5 Sonnet "V2" model. Change to BEDROCK_ANTHROPIC_CLAUDE3.5_SONNET_V1 for the non-v2 version.
|
|
# - AWS_REGION=us-west-2 # Replace this with a different AWS region, if you desire
|
|
# - AWS_ACCESS_KEY_ID=FILL_ME_IN_PLEASE
|
|
# - AWS_SECRET_ACCESS_KEY=FILL_ME_IN_PLEASE
|
|
depends_on:
|
|
postgres:
|
|
condition: service_healthy
|
|
healthcheck:
|
|
test: ["CMD", "test", "-f", "/app/.streamlit/secrets.toml"]
|
|
interval: 5s
|
|
timeout: 5s
|
|
retries: 5
|
|
|
|
skyvern-ui:
|
|
image: public.ecr.aws/skyvern/skyvern-ui:latest
|
|
restart: on-failure
|
|
ports:
|
|
- 8080:8080
|
|
- 9090:9090
|
|
volumes:
|
|
- ./artifacts:/data/artifacts
|
|
- ./videos:/data/videos
|
|
- ./har:/data/har
|
|
- ./.streamlit:/app/.streamlit
|
|
environment:
|
|
# if you want to run skyvern on a remote server,
|
|
# you need to change the host in VITE_WSS_BASE_URL and VITE_API_BASE_URL to match your server ip
|
|
# If you're self-hosting this behind a dns, you'll want to set:
|
|
# A route for the API: api.yourdomain.com -> localhost:8000
|
|
# A route for the UI: yourdomain.com -> localhost:8080
|
|
# A route for the artifact API: artifact.yourdomain.com -> localhost:9090 (maybe not needed)
|
|
- VITE_WSS_BASE_URL=ws://localhost:8000/api/v1
|
|
# - VITE_ARTIFACT_API_BASE_URL=http://localhost:9090
|
|
# - VITE_API_BASE_URL=http://localhost:8000/api/v1
|
|
# - VITE_SKYVERN_API_KEY=<get this from "settings" in the Skyvern UI>
|
|
depends_on:
|
|
skyvern:
|
|
condition: service_healthy
|