mirror of
https://github.com/Skyvern-AI/skyvern.git
synced 2025-04-25 17:09:10 +00:00
track reasoning token and cached token (#1985)
This commit is contained in:
parent
185464f8ec
commit
eb3eb4eede
9 changed files with 112 additions and 16 deletions
|
@ -0,0 +1,37 @@
|
|||
"""keep track of reasoning token and cached token in the step and thought tables
|
||||
|
||||
Revision ID: 3aa168d1ffa5
|
||||
Revises: c6c0eee7f88d
|
||||
Create Date: 2025-03-20 23:24:39.160800+00:00
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union
|
||||
|
||||
import sqlalchemy as sa
|
||||
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "3aa168d1ffa5"
|
||||
down_revision: Union[str, None] = "c6c0eee7f88d"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.add_column("observer_thoughts", sa.Column("reasoning_token_count", sa.Integer(), nullable=True))
|
||||
op.add_column("observer_thoughts", sa.Column("cached_token_count", sa.Integer(), nullable=True))
|
||||
op.add_column("steps", sa.Column("reasoning_token_count", sa.Integer(), nullable=True))
|
||||
op.add_column("steps", sa.Column("cached_token_count", sa.Integer(), nullable=True))
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.drop_column("steps", "cached_token_count")
|
||||
op.drop_column("steps", "reasoning_token_count")
|
||||
op.drop_column("observer_thoughts", "cached_token_count")
|
||||
op.drop_column("observer_thoughts", "reasoning_token_count")
|
||||
# ### end Alembic commands ###
|
40
poetry.lock
generated
40
poetry.lock
generated
|
@ -2651,13 +2651,13 @@ files = [
|
|||
|
||||
[[package]]
|
||||
name = "litellm"
|
||||
version = "1.60.6"
|
||||
version = "1.63.12"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
optional = false
|
||||
python-versions = "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8"
|
||||
files = [
|
||||
{file = "litellm-1.60.6-py3-none-any.whl", hash = "sha256:7c2d61f5073c823aa7b069328fed34e61d0e9a1777f91e758c1770724d060578"},
|
||||
{file = "litellm-1.60.6.tar.gz", hash = "sha256:b9fdd38b482abc6b6d6afffa6fbf25912b70b1b34ca91a5c798aba2d81bef322"},
|
||||
{file = "litellm-1.63.12-py3-none-any.whl", hash = "sha256:ae72a9d7099100b4b1172aaa2954bf6d7b205d47ba76beec5cd53f62dd57913e"},
|
||||
{file = "litellm-1.63.12.tar.gz", hash = "sha256:db875fb0b5d2bebdcf68805bc0bd4733dcebf3630e9eef4753cfe414a53120fc"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -2667,7 +2667,7 @@ httpx = ">=0.23.0"
|
|||
importlib-metadata = ">=6.8.0"
|
||||
jinja2 = ">=3.1.2,<4.0.0"
|
||||
jsonschema = ">=4.22.0,<5.0.0"
|
||||
openai = ">=1.61.0"
|
||||
openai = ">=1.66.1"
|
||||
pydantic = ">=2.0.0,<3.0.0"
|
||||
python-dotenv = ">=0.2.0"
|
||||
tiktoken = ">=0.7.0"
|
||||
|
@ -2675,7 +2675,7 @@ tokenizers = "*"
|
|||
|
||||
[package.extras]
|
||||
extra-proxy = ["azure-identity (>=1.15.0,<2.0.0)", "azure-keyvault-secrets (>=4.8.0,<5.0.0)", "google-cloud-kms (>=2.21.3,<3.0.0)", "prisma (==0.11.0)", "resend (>=0.8.0,<0.9.0)"]
|
||||
proxy = ["PyJWT (>=2.8.0,<3.0.0)", "apscheduler (>=3.10.4,<4.0.0)", "backoff", "cryptography (>=43.0.1,<44.0.0)", "fastapi (>=0.115.5,<0.116.0)", "fastapi-sso (>=0.16.0,<0.17.0)", "gunicorn (>=22.0.0,<23.0.0)", "orjson (>=3.9.7,<4.0.0)", "pynacl (>=1.5.0,<2.0.0)", "python-multipart (>=0.0.18,<0.0.19)", "pyyaml (>=6.0.1,<7.0.0)", "rq", "uvicorn (>=0.29.0,<0.30.0)", "uvloop (>=0.21.0,<0.22.0)"]
|
||||
proxy = ["PyJWT (>=2.8.0,<3.0.0)", "apscheduler (>=3.10.4,<4.0.0)", "backoff", "boto3 (==1.34.34)", "cryptography (>=43.0.1,<44.0.0)", "fastapi (>=0.115.5,<0.116.0)", "fastapi-sso (>=0.16.0,<0.17.0)", "gunicorn (>=22.0.0,<23.0.0)", "orjson (>=3.9.7,<4.0.0)", "pynacl (>=1.5.0,<2.0.0)", "python-multipart (>=0.0.18,<0.0.19)", "pyyaml (>=6.0.1,<7.0.0)", "rq", "uvicorn (>=0.29.0,<0.30.0)", "uvloop (>=0.21.0,<0.22.0)", "websockets (>=13.1.0,<14.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "mako"
|
||||
|
@ -3337,13 +3337,13 @@ sympy = "*"
|
|||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.63.2"
|
||||
version = "1.68.0"
|
||||
description = "The official Python library for the openai API"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "openai-1.63.2-py3-none-any.whl", hash = "sha256:1f38b27b5a40814c2b7d8759ec78110df58c4a614c25f182809ca52b080ff4d4"},
|
||||
{file = "openai-1.63.2.tar.gz", hash = "sha256:aeabeec984a7d2957b4928ceaa339e2ead19c61cfcf35ae62b7c363368d26360"},
|
||||
{file = "openai-1.68.0-py3-none-any.whl", hash = "sha256:20e279b0f3a78cb4a95f3eab2a180f3ee30c6a196aeebd6bf642a4f88ab85ee1"},
|
||||
{file = "openai-1.68.0.tar.gz", hash = "sha256:c570c06c9ba10f98b891ac30a3dd7b5c89ed48094c711c7a3f35fb5ade6c0757"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -3351,8 +3351,10 @@ anyio = ">=3.5.0,<5"
|
|||
distro = ">=1.7.0,<2"
|
||||
httpx = ">=0.23.0,<1"
|
||||
jiter = ">=0.4.0,<1"
|
||||
numpy = ">=2.0.2"
|
||||
pydantic = ">=1.9.0,<3"
|
||||
sniffio = "*"
|
||||
sounddevice = ">=0.5.1"
|
||||
tqdm = ">4"
|
||||
typing-extensions = ">=4.11,<5"
|
||||
|
||||
|
@ -5324,6 +5326,26 @@ files = [
|
|||
{file = "sortedcontainers-2.4.0.tar.gz", hash = "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "sounddevice"
|
||||
version = "0.5.1"
|
||||
description = "Play and Record Sound with Python"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "sounddevice-0.5.1-py3-none-any.whl", hash = "sha256:e2017f182888c3f3c280d9fbac92e5dbddac024a7e3442f6e6116bd79dab8a9c"},
|
||||
{file = "sounddevice-0.5.1-py3-none-macosx_10_6_x86_64.macosx_10_6_universal2.whl", hash = "sha256:d16cb23d92322526a86a9490c427bf8d49e273d9ccc0bd096feecd229cde6031"},
|
||||
{file = "sounddevice-0.5.1-py3-none-win32.whl", hash = "sha256:d84cc6231526e7a08e89beff229c37f762baefe5e0cc2747cbe8e3a565470055"},
|
||||
{file = "sounddevice-0.5.1-py3-none-win_amd64.whl", hash = "sha256:4313b63f2076552b23ac3e0abd3bcfc0c1c6a696fc356759a13bd113c9df90f1"},
|
||||
{file = "sounddevice-0.5.1.tar.gz", hash = "sha256:09ca991daeda8ce4be9ac91e15a9a81c8f81efa6b695a348c9171ea0c16cb041"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
CFFI = ">=1.0"
|
||||
|
||||
[package.extras]
|
||||
numpy = ["NumPy"]
|
||||
|
||||
[[package]]
|
||||
name = "soupsieve"
|
||||
version = "2.6"
|
||||
|
@ -6535,4 +6557,4 @@ type = ["pytest-mypy"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.11,<3.12"
|
||||
content-hash = "a375238b024ba31d21440421bbd89689139b6846789e70bd45e1515f615dbc2a"
|
||||
content-hash = "91915e847d90ac222cdedc44682ab71870d5b369e3a6b50c3a333a09a94bcbfc"
|
||||
|
|
|
@ -16,7 +16,7 @@ python-multipart = "^0.0.6"
|
|||
toml = "^0.10.2"
|
||||
jinja2 = "^3.1.2"
|
||||
uvicorn = {extras = ["standard"], version = "^0.24.0.post1"}
|
||||
litellm = "1.60.6"
|
||||
litellm = "^1.63.12"
|
||||
selenium = "^4.13.0"
|
||||
playwright = "1.46.0"
|
||||
pre-commit = "^3.5.0"
|
||||
|
|
|
@ -163,12 +163,11 @@ class LLMAPIHandlerFactory:
|
|||
LOG.exception("Failed to calculate LLM cost", error=str(e))
|
||||
llm_cost = 0
|
||||
prompt_tokens = response.get("usage", {}).get("prompt_tokens", 0)
|
||||
|
||||
# TODO (suchintan): Properly support reasoning tokens
|
||||
reasoning_tokens = response.get("usage", {}).get("reasoning_tokens", 0)
|
||||
LOG.debug("Reasoning tokens", reasoning_tokens=reasoning_tokens)
|
||||
|
||||
completion_tokens = response.get("usage", {}).get("completion_tokens", 0) + reasoning_tokens
|
||||
reasoning_tokens = (
|
||||
response.get("usage", {}).get("completion_tokens_details", {}).get("reasoning_tokens", 0)
|
||||
)
|
||||
completion_tokens = response.get("usage", {}).get("completion_tokens", 0)
|
||||
cached_tokens = response.get("usage", {}).get("prompt_tokens_details", {}).get("cached_tokens", 0)
|
||||
|
||||
if step:
|
||||
await app.DATABASE.update_step(
|
||||
|
@ -178,6 +177,8 @@ class LLMAPIHandlerFactory:
|
|||
incremental_cost=llm_cost,
|
||||
incremental_input_tokens=prompt_tokens if prompt_tokens > 0 else None,
|
||||
incremental_output_tokens=completion_tokens if completion_tokens > 0 else None,
|
||||
incremental_reasoning_tokens=reasoning_tokens if reasoning_tokens > 0 else None,
|
||||
incremental_cached_tokens=cached_tokens if cached_tokens > 0 else None,
|
||||
)
|
||||
if thought:
|
||||
await app.DATABASE.update_thought(
|
||||
|
@ -186,6 +187,8 @@ class LLMAPIHandlerFactory:
|
|||
input_token_count=prompt_tokens if prompt_tokens > 0 else None,
|
||||
output_token_count=completion_tokens if completion_tokens > 0 else None,
|
||||
thought_cost=llm_cost,
|
||||
reasoning_token_count=reasoning_tokens if reasoning_tokens > 0 else None,
|
||||
cached_token_count=cached_tokens if cached_tokens > 0 else None,
|
||||
)
|
||||
parsed_response = parse_api_response(response, llm_config.add_assistant_prefix)
|
||||
await app.ARTIFACT_MANAGER.create_llm_artifact(
|
||||
|
@ -348,6 +351,10 @@ class LLMAPIHandlerFactory:
|
|||
llm_cost = 0
|
||||
prompt_tokens = response.get("usage", {}).get("prompt_tokens", 0)
|
||||
completion_tokens = response.get("usage", {}).get("completion_tokens", 0)
|
||||
reasoning_tokens = (
|
||||
response.get("usage", {}).get("completion_tokens_details", {}).get("reasoning_tokens", 0)
|
||||
)
|
||||
cached_tokens = response.get("usage", {}).get("prompt_tokens_details", {}).get("cached_tokens", 0)
|
||||
if step:
|
||||
await app.DATABASE.update_step(
|
||||
task_id=step.task_id,
|
||||
|
@ -356,6 +363,8 @@ class LLMAPIHandlerFactory:
|
|||
incremental_cost=llm_cost,
|
||||
incremental_input_tokens=prompt_tokens if prompt_tokens > 0 else None,
|
||||
incremental_output_tokens=completion_tokens if completion_tokens > 0 else None,
|
||||
incremental_reasoning_tokens=reasoning_tokens if reasoning_tokens > 0 else None,
|
||||
incremental_cached_tokens=cached_tokens if cached_tokens > 0 else None,
|
||||
)
|
||||
if thought:
|
||||
await app.DATABASE.update_thought(
|
||||
|
@ -363,6 +372,8 @@ class LLMAPIHandlerFactory:
|
|||
organization_id=thought.organization_id,
|
||||
input_token_count=prompt_tokens if prompt_tokens > 0 else None,
|
||||
output_token_count=completion_tokens if completion_tokens > 0 else None,
|
||||
reasoning_token_count=reasoning_tokens if reasoning_tokens > 0 else None,
|
||||
cached_token_count=cached_tokens if cached_tokens > 0 else None,
|
||||
thought_cost=llm_cost,
|
||||
)
|
||||
parsed_response = parse_api_response(response, llm_config.add_assistant_prefix)
|
||||
|
|
|
@ -492,6 +492,8 @@ class AgentDB:
|
|||
incremental_cost: float | None = None,
|
||||
incremental_input_tokens: int | None = None,
|
||||
incremental_output_tokens: int | None = None,
|
||||
incremental_reasoning_tokens: int | None = None,
|
||||
incremental_cached_tokens: int | None = None,
|
||||
) -> Step:
|
||||
try:
|
||||
async with self.Session() as session:
|
||||
|
@ -517,6 +519,10 @@ class AgentDB:
|
|||
step.input_token_count = incremental_input_tokens + (step.input_token_count or 0)
|
||||
if incremental_output_tokens is not None:
|
||||
step.output_token_count = incremental_output_tokens + (step.output_token_count or 0)
|
||||
if incremental_reasoning_tokens is not None:
|
||||
step.reasoning_token_count = incremental_reasoning_tokens + (step.reasoning_token_count or 0)
|
||||
if incremental_cached_tokens is not None:
|
||||
step.cached_token_count = incremental_cached_tokens + (step.cached_token_count or 0)
|
||||
|
||||
await session.commit()
|
||||
updated_step = await self.get_step(task_id, step_id, organization_id)
|
||||
|
@ -2290,6 +2296,8 @@ class AgentDB:
|
|||
output: dict[str, Any] | None = None,
|
||||
input_token_count: int | None = None,
|
||||
output_token_count: int | None = None,
|
||||
reasoning_token_count: int | None = None,
|
||||
cached_token_count: int | None = None,
|
||||
thought_cost: float | None = None,
|
||||
organization_id: str | None = None,
|
||||
) -> Thought:
|
||||
|
@ -2309,6 +2317,8 @@ class AgentDB:
|
|||
output=output,
|
||||
input_token_count=input_token_count,
|
||||
output_token_count=output_token_count,
|
||||
reasoning_token_count=reasoning_token_count,
|
||||
cached_token_count=cached_token_count,
|
||||
thought_cost=thought_cost,
|
||||
organization_id=organization_id,
|
||||
)
|
||||
|
@ -2330,6 +2340,8 @@ class AgentDB:
|
|||
output: dict[str, Any] | None = None,
|
||||
input_token_count: int | None = None,
|
||||
output_token_count: int | None = None,
|
||||
reasoning_token_count: int | None = None,
|
||||
cached_token_count: int | None = None,
|
||||
thought_cost: float | None = None,
|
||||
organization_id: str | None = None,
|
||||
) -> Thought:
|
||||
|
@ -2362,6 +2374,10 @@ class AgentDB:
|
|||
thought_obj.input_token_count = input_token_count
|
||||
if output_token_count:
|
||||
thought_obj.output_token_count = output_token_count
|
||||
if reasoning_token_count:
|
||||
thought_obj.reasoning_token_count = reasoning_token_count
|
||||
if cached_token_count:
|
||||
thought_obj.cached_token_count = cached_token_count
|
||||
if thought_cost:
|
||||
thought_obj.thought_cost = thought_cost
|
||||
await session.commit()
|
||||
|
|
|
@ -117,6 +117,8 @@ class StepModel(Base):
|
|||
)
|
||||
input_token_count = Column(Integer, default=0)
|
||||
output_token_count = Column(Integer, default=0)
|
||||
reasoning_token_count = Column(Integer, default=0)
|
||||
cached_token_count = Column(Integer, default=0)
|
||||
step_cost = Column(Numeric, default=0)
|
||||
|
||||
|
||||
|
@ -612,6 +614,8 @@ class ThoughtModel(Base):
|
|||
answer = Column(String, nullable=True)
|
||||
input_token_count = Column(Integer, nullable=True)
|
||||
output_token_count = Column(Integer, nullable=True)
|
||||
reasoning_token_count = Column(Integer, nullable=True)
|
||||
cached_token_count = Column(Integer, nullable=True)
|
||||
thought_cost = Column(Numeric, nullable=True)
|
||||
|
||||
observer_thought_type = Column(String, nullable=True, default=ThoughtType.plan)
|
||||
|
|
|
@ -108,6 +108,8 @@ def convert_to_step(step_model: StepModel, debug_enabled: bool = False) -> Step:
|
|||
organization_id=step_model.organization_id,
|
||||
input_token_count=step_model.input_token_count,
|
||||
output_token_count=step_model.output_token_count,
|
||||
reasoning_token_count=step_model.reasoning_token_count,
|
||||
cached_token_count=step_model.cached_token_count,
|
||||
step_cost=step_model.step_cost,
|
||||
)
|
||||
|
||||
|
|
|
@ -52,6 +52,8 @@ class Step(BaseModel):
|
|||
organization_id: str | None = None
|
||||
input_token_count: int = 0
|
||||
output_token_count: int = 0
|
||||
reasoning_token_count: int = 0
|
||||
cached_token_count: int = 0
|
||||
step_cost: float = 0
|
||||
|
||||
def validate_update(
|
||||
|
|
|
@ -92,6 +92,8 @@ class Thought(BaseModel):
|
|||
output: dict[str, Any] | None = None
|
||||
input_token_count: int | None = None
|
||||
output_token_count: int | None = None
|
||||
reasoning_token_count: int | None = None
|
||||
cached_token_count: int | None = None
|
||||
thought_cost: float | None = None
|
||||
|
||||
created_at: datetime
|
||||
|
|
Loading…
Add table
Reference in a new issue