added openai support

This commit is contained in:
benx13 2024-11-21 08:57:30 -08:00
parent e3cb357c3b
commit b5117f37b5
4 changed files with 88 additions and 23 deletions

View file

@ -119,6 +119,26 @@ python Web-LLM.py
The LLM settings can be modified in `llm_config.py`. You must specify your model name in the configuration for the researcher to function. The default configuration is optimized for research tasks with the specified Phi-3 model.
## OpenAI Configuration
To use OpenAI models:
1. Set your OpenAI API key either:
- In `llm_config.py`: Add your API key to `LLM_CONFIG_OPENAI["api_key"]`
- Or as an environment variable: `export OPENAI_API_KEY='your-api-key'`
2. Change the LLM_TYPE in `llm_config.py`:
```python
LLM_TYPE = "openai" # Change this line
```
3. Optional: Modify the model name in `LLM_CONFIG_OPENAI`:
```python
"model_name": "gpt-4o-mini" # Or another OpenAI model
```
## Current Status
This is a prototype that demonstrates functional automated research capabilities. While still in development, it successfully performs structured research tasks. Currently tested and working well with the phi3:3.8b-mini-128k-instruct model when the context is set as advised previously.

View file

@ -1,29 +1,29 @@
# llm_config.py
LLM_TYPE = "ollama" # Options: 'llama_cpp', 'ollama'
LLM_TYPE = "openai" # Options: 'llama_cpp', 'ollama', 'openai'
# LLM settings for llama_cpp
MODEL_PATH = "/home/james/llama.cpp/models/gemma-2-9b-it-Q6_K.gguf" # Replace with your llama.cpp models filepath
MODEL_PATH = "/home/james/llama.cpp/models/gemma-2-9b-it-Q6_K.gguf"
LLM_CONFIG_LLAMA_CPP = {
"llm_type": "llama_cpp",
"model_path": MODEL_PATH,
"n_ctx": 20000, # context size
"n_gpu_layers": 0, # number of layers to offload to GPU (-1 for all, 0 for none)
"n_threads": 8, # number of threads to use
"temperature": 0.7, # temperature for sampling
"top_p": 0.9, # top p for sampling
"top_k": 40, # top k for sampling
"repeat_penalty": 1.1, # repeat penalty
"max_tokens": 1024, # max tokens to generate
"stop": ["User:", "\n\n"] # stop sequences
"n_ctx": 20000,
"n_gpu_layers": 0,
"n_threads": 8,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 40,
"repeat_penalty": 1.1,
"max_tokens": 1024,
"stop": ["User:", "\n\n"]
}
# LLM settings for Ollama
LLM_CONFIG_OLLAMA = {
"llm_type": "ollama",
"base_url": "http://localhost:11434", # default Ollama server URL
"model_name": "custom-phi3-32k-Q4_K_M", # Replace with your Ollama model name
"base_url": "http://localhost:11434",
"model_name": "custom-phi3-32k-Q4_K_M",
"temperature": 0.7,
"top_p": 0.9,
"n_ctx": 55000,
@ -31,10 +31,24 @@ LLM_CONFIG_OLLAMA = {
"stop": ["User:", "\n\n"]
}
# New: LLM settings for OpenAI
LLM_CONFIG_OPENAI = {
"llm_type": "openai",
"model_name": "gpt-4o-mini",
"api_key": "",
"temperature": 0.7,
"top_p": 0.9,
"max_tokens": 4096,
"stop": ["User:", "\n\n"],
"context_length": 128000 # GPT-4 Turbo context window
}
def get_llm_config():
if LLM_TYPE == "llama_cpp":
return LLM_CONFIG_LLAMA_CPP
elif LLM_TYPE == "ollama":
return LLM_CONFIG_OLLAMA
elif LLM_TYPE == "openai":
return LLM_CONFIG_OPENAI
else:
raise ValueError(f"Invalid LLM_TYPE: {LLM_TYPE}")

View file

@ -1,20 +1,60 @@
from llama_cpp import Llama
import requests
import json
import os
from llm_config import get_llm_config
from openai import OpenAI
class LLMWrapper:
def __init__(self):
self.llm_config = get_llm_config()
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
if self.llm_type == 'llama_cpp':
self.llm = self._initialize_llama_cpp()
elif self.llm_type == 'ollama':
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
self.model_name = self.llm_config.get('model_name', 'your_model_name')
elif self.llm_type == 'openai':
self._initialize_openai()
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
def _initialize_openai(self):
"""Initialize OpenAI client"""
api_key = self.llm_config.get('api_key') or os.getenv('OPENAI_API_KEY')
if not api_key:
raise ValueError("OpenAI API key not found. Set it in config or OPENAI_API_KEY environment variable")
self.client = OpenAI(api_key=api_key)
self.model_name = self.llm_config.get('model_name', 'gpt-4o-mini')
def generate(self, prompt, **kwargs):
if self.llm_type == 'llama_cpp':
llama_kwargs = self._prepare_llama_kwargs(kwargs)
response = self.llm(prompt, **llama_kwargs)
return response['choices'][0]['text'].strip()
elif self.llm_type == 'ollama':
return self._ollama_generate(prompt, **kwargs)
elif self.llm_type == 'openai':
return self._openai_generate(prompt, **kwargs)
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
def _openai_generate(self, prompt, **kwargs):
"""Generate text using OpenAI API"""
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
stop=kwargs.get('stop', self.llm_config.get('stop', None))
)
return response.choices[0].message.content.strip()
except Exception as e:
raise Exception(f"OpenAI API error: {str(e)}")
def _initialize_llama_cpp(self):
return Llama(
model_path=self.llm_config.get('model_path'),
@ -24,16 +64,6 @@ class LLMWrapper:
verbose=False
)
def generate(self, prompt, **kwargs):
if self.llm_type == 'llama_cpp':
llama_kwargs = self._prepare_llama_kwargs(kwargs)
response = self.llm(prompt, **llama_kwargs)
return response['choices'][0]['text'].strip()
elif self.llm_type == 'ollama':
return self._ollama_generate(prompt, **kwargs)
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
def _ollama_generate(self, prompt, **kwargs):
url = f"{self.base_url}/api/generate"
data = {

View file

@ -9,3 +9,4 @@ keyboard
curses-windows; sys_platform == 'win32'
tqdm
urllib3
openai