Added support for hosted LLMs

This commit is contained in:
Graham V 2024-11-20 08:17:58 -05:00
parent 7f9c7e023b
commit 66634f4070
3 changed files with 106 additions and 1 deletions

View file

@ -1,6 +1,6 @@
# llm_config.py
LLM_TYPE = "ollama" # Options: 'llama_cpp', 'ollama'
LLM_TYPE = "anthropic" # Options: 'llama_cpp', 'ollama', 'openai', 'anthropic'
# LLM settings for llama_cpp
MODEL_PATH = "/home/james/llama.cpp/models/gemma-2-9b-it-Q6_K.gguf" # Replace with your llama.cpp models filepath
@ -31,10 +31,39 @@ LLM_CONFIG_OLLAMA = {
"stop": ["User:", "\n\n"]
}
# LLM settings for OpenAI
LLM_CONFIG_OPENAI = {
"llm_type": "openai",
"api_key": "", # Set via environment variable OPENAI_API_KEY
"base_url": None, # Optional: Set to use alternative OpenAI-compatible endpoints
"model_name": "gpt-4o", # Required: Specify the model to use
"temperature": 0.7,
"top_p": 0.9,
"max_tokens": 4096,
"stop": ["User:", "\n\n"],
"presence_penalty": 0,
"frequency_penalty": 0
}
# LLM settings for Anthropic
LLM_CONFIG_ANTHROPIC = {
"llm_type": "anthropic",
"api_key": "", # Set via environment variable ANTHROPIC_API_KEY
"model_name": "claude-3-5-sonnet-latest", # Required: Specify the model to use
"temperature": 0.7,
"top_p": 0.9,
"max_tokens": 4096,
"stop": ["User:", "\n\n"]
}
def get_llm_config():
if LLM_TYPE == "llama_cpp":
return LLM_CONFIG_LLAMA_CPP
elif LLM_TYPE == "ollama":
return LLM_CONFIG_OLLAMA
elif LLM_TYPE == "openai":
return LLM_CONFIG_OPENAI
elif LLM_TYPE == "anthropic":
return LLM_CONFIG_ANTHROPIC
else:
raise ValueError(f"Invalid LLM_TYPE: {LLM_TYPE}")

View file

@ -1,17 +1,25 @@
import os
from llama_cpp import Llama
import requests
import json
from llm_config import get_llm_config
from openai import OpenAI
from anthropic import Anthropic
class LLMWrapper:
def __init__(self):
self.llm_config = get_llm_config()
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
if self.llm_type == 'llama_cpp':
self.llm = self._initialize_llama_cpp()
elif self.llm_type == 'ollama':
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
self.model_name = self.llm_config.get('model_name', 'your_model_name')
elif self.llm_type == 'openai':
self._initialize_openai()
elif self.llm_type == 'anthropic':
self._initialize_anthropic()
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
@ -24,6 +32,36 @@ class LLMWrapper:
verbose=False
)
def _initialize_openai(self):
api_key = os.getenv('OPENAI_API_KEY') or self.llm_config.get('api_key')
if not api_key:
raise ValueError("OpenAI API key not found. Set OPENAI_API_KEY environment variable.")
base_url = self.llm_config.get('base_url')
model_name = self.llm_config.get('model_name')
if not model_name:
raise ValueError("OpenAI model name not specified in config")
client_kwargs = {'api_key': api_key}
if base_url:
client_kwargs['base_url'] = base_url
self.client = OpenAI(**client_kwargs)
self.model_name = model_name
def _initialize_anthropic(self):
api_key = os.getenv('ANTHROPIC_API_KEY') or self.llm_config.get('api_key')
if not api_key:
raise ValueError("Anthropic API key not found. Set ANTHROPIC_API_KEY environment variable.")
model_name = self.llm_config.get('model_name')
if not model_name:
raise ValueError("Anthropic model name not specified in config")
self.client = Anthropic(api_key=api_key)
self.model_name = model_name
def generate(self, prompt, **kwargs):
if self.llm_type == 'llama_cpp':
llama_kwargs = self._prepare_llama_kwargs(kwargs)
@ -31,6 +69,10 @@ class LLMWrapper:
return response['choices'][0]['text'].strip()
elif self.llm_type == 'ollama':
return self._ollama_generate(prompt, **kwargs)
elif self.llm_type == 'openai':
return self._openai_generate(prompt, **kwargs)
elif self.llm_type == 'anthropic':
return self._anthropic_generate(prompt, **kwargs)
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
@ -53,6 +95,38 @@ class LLMWrapper:
text = ''.join(json.loads(line)['response'] for line in response.iter_lines() if line)
return text.strip()
def _openai_generate(self, prompt, **kwargs):
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
stop=kwargs.get('stop', self.llm_config.get('stop', [])),
presence_penalty=self.llm_config.get('presence_penalty', 0),
frequency_penalty=self.llm_config.get('frequency_penalty', 0)
)
return response.choices[0].message.content.strip()
except Exception as e:
raise Exception(f"OpenAI API request failed: {str(e)}")
def _anthropic_generate(self, prompt, **kwargs):
try:
response = self.client.messages.create(
model=self.model_name,
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
messages=[{
"role": "user",
"content": prompt
}]
)
return response.content[0].text.strip()
except Exception as e:
raise Exception(f"Anthropic API request failed: {str(e)}")
def _cleanup(self):
"""Force terminate any running LLM processes"""
if self.llm_type == 'ollama':

View file

@ -9,3 +9,5 @@ keyboard
curses-windows; sys_platform == 'win32'
tqdm
urllib3
openai>=1.0.0
anthropic>=0.7.0