mirror of
https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama.git
synced 2025-01-18 16:37:47 +00:00
Delete llm_wrapper.py
This commit is contained in:
parent
62f7de3ad7
commit
49bb0b217d
154
llm_wrapper.py
154
llm_wrapper.py
|
@ -1,154 +0,0 @@
|
|||
import os
|
||||
from llama_cpp import Llama
|
||||
import requests
|
||||
import json
|
||||
from llm_config import get_llm_config
|
||||
from openai import OpenAI
|
||||
from anthropic import Anthropic
|
||||
|
||||
class LLMWrapper:
|
||||
def __init__(self):
|
||||
self.llm_config = get_llm_config()
|
||||
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
|
||||
|
||||
if self.llm_type == 'llama_cpp':
|
||||
self.llm = self._initialize_llama_cpp()
|
||||
elif self.llm_type == 'ollama':
|
||||
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
|
||||
self.model_name = self.llm_config.get('model_name', 'your_model_name')
|
||||
elif self.llm_type == 'openai':
|
||||
self._initialize_openai()
|
||||
elif self.llm_type == 'anthropic':
|
||||
self._initialize_anthropic()
|
||||
else:
|
||||
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
||||
|
||||
def _initialize_llama_cpp(self):
|
||||
return Llama(
|
||||
model_path=self.llm_config.get('model_path'),
|
||||
n_ctx=self.llm_config.get('n_ctx', 55000),
|
||||
n_gpu_layers=self.llm_config.get('n_gpu_layers', 0),
|
||||
n_threads=self.llm_config.get('n_threads', 8),
|
||||
verbose=False
|
||||
)
|
||||
|
||||
def _initialize_openai(self):
|
||||
api_key = os.getenv('OPENAI_API_KEY') or self.llm_config.get('api_key')
|
||||
if not api_key:
|
||||
raise ValueError("OpenAI API key not found. Set OPENAI_API_KEY environment variable.")
|
||||
|
||||
base_url = self.llm_config.get('base_url')
|
||||
model_name = self.llm_config.get('model_name')
|
||||
|
||||
if not model_name:
|
||||
raise ValueError("OpenAI model name not specified in config")
|
||||
|
||||
client_kwargs = {'api_key': api_key}
|
||||
if base_url:
|
||||
client_kwargs['base_url'] = base_url
|
||||
|
||||
self.client = OpenAI(**client_kwargs)
|
||||
self.model_name = model_name
|
||||
|
||||
def _initialize_anthropic(self):
|
||||
api_key = os.getenv('ANTHROPIC_API_KEY') or self.llm_config.get('api_key')
|
||||
if not api_key:
|
||||
raise ValueError("Anthropic API key not found. Set ANTHROPIC_API_KEY environment variable.")
|
||||
|
||||
model_name = self.llm_config.get('model_name')
|
||||
if not model_name:
|
||||
raise ValueError("Anthropic model name not specified in config")
|
||||
|
||||
self.client = Anthropic(api_key=api_key)
|
||||
self.model_name = model_name
|
||||
|
||||
def generate(self, prompt, **kwargs):
|
||||
if self.llm_type == 'llama_cpp':
|
||||
llama_kwargs = self._prepare_llama_kwargs(kwargs)
|
||||
response = self.llm(prompt, **llama_kwargs)
|
||||
return response['choices'][0]['text'].strip()
|
||||
elif self.llm_type == 'ollama':
|
||||
return self._ollama_generate(prompt, **kwargs)
|
||||
elif self.llm_type == 'openai':
|
||||
return self._openai_generate(prompt, **kwargs)
|
||||
elif self.llm_type == 'anthropic':
|
||||
return self._anthropic_generate(prompt, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
||||
|
||||
def _ollama_generate(self, prompt, **kwargs):
|
||||
url = f"{self.base_url}/api/generate"
|
||||
data = {
|
||||
'model': self.model_name,
|
||||
'prompt': prompt,
|
||||
'options': {
|
||||
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||||
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||||
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
||||
'num_predict': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
|
||||
'num_ctx': self.llm_config.get('n_ctx', 55000)
|
||||
}
|
||||
}
|
||||
response = requests.post(url, json=data, stream=True)
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"Ollama API request failed with status {response.status_code}: {response.text}")
|
||||
text = ''.join(json.loads(line)['response'] for line in response.iter_lines() if line)
|
||||
return text.strip()
|
||||
|
||||
def _openai_generate(self, prompt, **kwargs):
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||||
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||||
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
|
||||
stop=kwargs.get('stop', self.llm_config.get('stop', [])),
|
||||
presence_penalty=self.llm_config.get('presence_penalty', 0),
|
||||
frequency_penalty=self.llm_config.get('frequency_penalty', 0)
|
||||
)
|
||||
return response.choices[0].message.content.strip()
|
||||
except Exception as e:
|
||||
raise Exception(f"OpenAI API request failed: {str(e)}")
|
||||
|
||||
def _anthropic_generate(self, prompt, **kwargs):
|
||||
try:
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
|
||||
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||||
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}]
|
||||
)
|
||||
return response.content[0].text.strip()
|
||||
except Exception as e:
|
||||
raise Exception(f"Anthropic API request failed: {str(e)}")
|
||||
|
||||
def _cleanup(self):
|
||||
"""Force terminate any running LLM processes"""
|
||||
if self.llm_type == 'ollama':
|
||||
try:
|
||||
# Force terminate Ollama process
|
||||
requests.post(f"{self.base_url}/api/terminate")
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
# Also try to terminate via subprocess if needed
|
||||
import subprocess
|
||||
subprocess.run(['pkill', '-f', 'ollama'], capture_output=True)
|
||||
except:
|
||||
pass
|
||||
|
||||
def _prepare_llama_kwargs(self, kwargs):
|
||||
llama_kwargs = {
|
||||
'max_tokens': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
|
||||
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||||
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||||
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
||||
'echo': False,
|
||||
}
|
||||
return llama_kwargs
|
Loading…
Reference in a new issue