mirror of
https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama.git
synced 2025-01-19 00:47:46 +00:00
81 lines
3.3 KiB
Python
81 lines
3.3 KiB
Python
|
from llama_cpp import Llama
|
||
|
import requests
|
||
|
import json
|
||
|
from llm_config import get_llm_config
|
||
|
|
||
|
class LLMWrapper:
|
||
|
def __init__(self):
|
||
|
self.llm_config = get_llm_config()
|
||
|
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
|
||
|
if self.llm_type == 'llama_cpp':
|
||
|
self.llm = self._initialize_llama_cpp()
|
||
|
elif self.llm_type == 'ollama':
|
||
|
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
|
||
|
self.model_name = self.llm_config.get('model_name', 'your_model_name')
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
||
|
|
||
|
def _initialize_llama_cpp(self):
|
||
|
return Llama(
|
||
|
model_path=self.llm_config.get('model_path'),
|
||
|
n_ctx=self.llm_config.get('n_ctx', 55000),
|
||
|
n_gpu_layers=self.llm_config.get('n_gpu_layers', 0),
|
||
|
n_threads=self.llm_config.get('n_threads', 8),
|
||
|
verbose=False
|
||
|
)
|
||
|
|
||
|
def generate(self, prompt, **kwargs):
|
||
|
if self.llm_type == 'llama_cpp':
|
||
|
llama_kwargs = self._prepare_llama_kwargs(kwargs)
|
||
|
response = self.llm(prompt, **llama_kwargs)
|
||
|
return response['choices'][0]['text'].strip()
|
||
|
elif self.llm_type == 'ollama':
|
||
|
return self._ollama_generate(prompt, **kwargs)
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
|
||
|
|
||
|
def _ollama_generate(self, prompt, **kwargs):
|
||
|
url = f"{self.base_url}/api/generate"
|
||
|
data = {
|
||
|
'model': self.model_name,
|
||
|
'prompt': prompt,
|
||
|
'options': {
|
||
|
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||
|
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||
|
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
||
|
'num_predict': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
|
||
|
'context_length': self.llm_config.get('n_ctx', 55000)
|
||
|
}
|
||
|
}
|
||
|
response = requests.post(url, json=data, stream=True)
|
||
|
if response.status_code != 200:
|
||
|
raise Exception(f"Ollama API request failed with status {response.status_code}: {response.text}")
|
||
|
text = ''.join(json.loads(line)['response'] for line in response.iter_lines() if line)
|
||
|
return text.strip()
|
||
|
|
||
|
def _cleanup(self):
|
||
|
"""Force terminate any running LLM processes"""
|
||
|
if self.llm_type == 'ollama':
|
||
|
try:
|
||
|
# Force terminate Ollama process
|
||
|
requests.post(f"{self.base_url}/api/terminate")
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
# Also try to terminate via subprocess if needed
|
||
|
import subprocess
|
||
|
subprocess.run(['pkill', '-f', 'ollama'], capture_output=True)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
def _prepare_llama_kwargs(self, kwargs):
|
||
|
llama_kwargs = {
|
||
|
'max_tokens': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
|
||
|
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
|
||
|
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
|
||
|
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
|
||
|
'echo': False,
|
||
|
}
|
||
|
return llama_kwargs
|