Automated-AI-Web-Researcher.../llm_wrapper.py

155 lines
6.5 KiB
Python
Raw Normal View History

2024-11-26 02:25:04 +00:00
import os
from llama_cpp import Llama
import requests
import json
from llm_config import get_llm_config
from openai import OpenAI
from anthropic import Anthropic
class LLMWrapper:
def __init__(self):
self.llm_config = get_llm_config()
self.llm_type = self.llm_config.get('llm_type', 'llama_cpp')
if self.llm_type == 'llama_cpp':
self.llm = self._initialize_llama_cpp()
elif self.llm_type == 'ollama':
self.base_url = self.llm_config.get('base_url', 'http://localhost:11434')
self.model_name = self.llm_config.get('model_name', 'your_model_name')
elif self.llm_type == 'openai':
self._initialize_openai()
elif self.llm_type == 'anthropic':
self._initialize_anthropic()
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
def _initialize_llama_cpp(self):
return Llama(
model_path=self.llm_config.get('model_path'),
n_ctx=self.llm_config.get('n_ctx', 55000),
n_gpu_layers=self.llm_config.get('n_gpu_layers', 0),
n_threads=self.llm_config.get('n_threads', 8),
verbose=False
)
def _initialize_openai(self):
api_key = os.getenv('OPENAI_API_KEY') or self.llm_config.get('api_key')
if not api_key:
raise ValueError("OpenAI API key not found. Set OPENAI_API_KEY environment variable.")
base_url = self.llm_config.get('base_url')
model_name = self.llm_config.get('model_name')
if not model_name:
raise ValueError("OpenAI model name not specified in config")
client_kwargs = {'api_key': api_key}
if base_url:
client_kwargs['base_url'] = base_url
self.client = OpenAI(**client_kwargs)
self.model_name = model_name
def _initialize_anthropic(self):
api_key = os.getenv('ANTHROPIC_API_KEY') or self.llm_config.get('api_key')
if not api_key:
raise ValueError("Anthropic API key not found. Set ANTHROPIC_API_KEY environment variable.")
model_name = self.llm_config.get('model_name')
if not model_name:
raise ValueError("Anthropic model name not specified in config")
self.client = Anthropic(api_key=api_key)
self.model_name = model_name
def generate(self, prompt, **kwargs):
if self.llm_type == 'llama_cpp':
llama_kwargs = self._prepare_llama_kwargs(kwargs)
response = self.llm(prompt, **llama_kwargs)
return response['choices'][0]['text'].strip()
elif self.llm_type == 'ollama':
return self._ollama_generate(prompt, **kwargs)
elif self.llm_type == 'openai':
return self._openai_generate(prompt, **kwargs)
elif self.llm_type == 'anthropic':
return self._anthropic_generate(prompt, **kwargs)
else:
raise ValueError(f"Unsupported LLM type: {self.llm_type}")
def _ollama_generate(self, prompt, **kwargs):
url = f"{self.base_url}/api/generate"
data = {
'model': self.model_name,
'prompt': prompt,
'options': {
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
'num_predict': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
'num_ctx': self.llm_config.get('n_ctx', 55000)
}
}
response = requests.post(url, json=data, stream=True)
if response.status_code != 200:
raise Exception(f"Ollama API request failed with status {response.status_code}: {response.text}")
text = ''.join(json.loads(line)['response'] for line in response.iter_lines() if line)
return text.strip()
def _openai_generate(self, prompt, **kwargs):
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
stop=kwargs.get('stop', self.llm_config.get('stop', [])),
presence_penalty=self.llm_config.get('presence_penalty', 0),
frequency_penalty=self.llm_config.get('frequency_penalty', 0)
)
return response.choices[0].message.content.strip()
except Exception as e:
raise Exception(f"OpenAI API request failed: {str(e)}")
def _anthropic_generate(self, prompt, **kwargs):
try:
response = self.client.messages.create(
model=self.model_name,
max_tokens=kwargs.get('max_tokens', self.llm_config.get('max_tokens', 4096)),
temperature=kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
top_p=kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
messages=[{
"role": "user",
"content": prompt
}]
)
return response.content[0].text.strip()
except Exception as e:
raise Exception(f"Anthropic API request failed: {str(e)}")
def _cleanup(self):
"""Force terminate any running LLM processes"""
if self.llm_type == 'ollama':
try:
# Force terminate Ollama process
requests.post(f"{self.base_url}/api/terminate")
except:
pass
try:
# Also try to terminate via subprocess if needed
import subprocess
subprocess.run(['pkill', '-f', 'ollama'], capture_output=True)
except:
pass
def _prepare_llama_kwargs(self, kwargs):
llama_kwargs = {
'max_tokens': kwargs.get('max_tokens', self.llm_config.get('max_tokens', 55000)),
'temperature': kwargs.get('temperature', self.llm_config.get('temperature', 0.7)),
'top_p': kwargs.get('top_p', self.llm_config.get('top_p', 0.9)),
'stop': kwargs.get('stop', self.llm_config.get('stop', [])),
'echo': False,
}
return llama_kwargs