Automated-AI-Web-Researcher.../llm_response_parser.py

241 lines
9.2 KiB
Python
Raw Permalink Normal View History

2024-11-26 02:25:04 +00:00
import re
from typing import Dict, List, Union, Optional
import logging
import json
from strategic_analysis_parser import StrategicAnalysisParser, AnalysisResult, ResearchFocus
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class UltimateLLMResponseParser:
def __init__(self):
self.decision_keywords = {
'refine': ['refine', 'need more info', 'insufficient', 'unclear', 'more research', 'additional search'],
'answer': ['answer', 'sufficient', 'enough info', 'can respond', 'adequate', 'comprehensive']
}
self.section_identifiers = [
('decision', r'(?i)decision\s*:'),
('reasoning', r'(?i)reasoning\s*:'),
('selected_results', r'(?i)selected results\s*:'),
('response', r'(?i)response\s*:')
]
# Initialize strategic analysis parser
self.strategic_parser = StrategicAnalysisParser()
def parse_llm_response(self, response: str, mode: str = 'search') -> Dict[str, Union[str, List[int], AnalysisResult]]:
"""
Parse LLM response based on mode
Args:
response (str): The LLM's response text
mode (str): 'search' for web search, 'research' for strategic analysis
Returns:
Dict containing parsed response
"""
logger.info(f"Starting to parse LLM response in {mode} mode")
if mode == 'research':
return self._parse_research_response(response)
# Original search mode parsing
result = {
'decision': None,
'reasoning': None,
'selected_results': [],
'response': None
}
parsing_strategies = [
self._parse_structured_response,
self._parse_json_response,
self._parse_unstructured_response,
self._parse_implicit_response
]
for strategy in parsing_strategies:
try:
parsed_result = strategy(response)
if self._is_valid_result(parsed_result):
result.update(parsed_result)
logger.info(f"Successfully parsed using strategy: {strategy.__name__}")
break
except Exception as e:
logger.warning(f"Error in parsing strategy {strategy.__name__}: {str(e)}")
if not self._is_valid_result(result):
logger.warning("All parsing strategies failed. Using fallback parsing.")
result = self._fallback_parsing(response)
result = self._post_process_result(result)
logger.info("Finished parsing LLM response")
return result
def _parse_research_response(self, response: str) -> Dict[str, Union[str, AnalysisResult]]:
"""Handle research mode specific parsing"""
try:
analysis_result = self.strategic_parser.parse_analysis(response)
if analysis_result:
return {
'mode': 'research',
'analysis_result': analysis_result,
'error': None
}
else:
logger.error("Failed to parse strategic analysis")
return {
'mode': 'research',
'analysis_result': None,
'error': 'Failed to parse strategic analysis'
}
except Exception as e:
logger.error(f"Error in research response parsing: {str(e)}")
return {
'mode': 'research',
'analysis_result': None,
'error': str(e)
}
def parse_search_query(self, query_response: str) -> Dict[str, str]:
"""Parse search query formulation response"""
try:
lines = query_response.strip().split('\n')
result = {
'query': '',
'time_range': 'none'
}
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
key = key.strip().lower()
value = value.strip()
if 'query' in key:
result['query'] = self._clean_query(value)
elif 'time' in key or 'range' in key:
result['time_range'] = self._validate_time_range(value)
return result
except Exception as e:
logger.error(f"Error parsing search query: {str(e)}")
return {'query': '', 'time_range': 'none'}
def _parse_structured_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
result = {}
for key, pattern in self.section_identifiers:
match = re.search(f'{pattern}(.*?)(?={"|".join([p for k, p in self.section_identifiers if k != key])}|$)',
response, re.IGNORECASE | re.DOTALL)
if match:
result[key] = match.group(1).strip()
if 'selected_results' in result:
result['selected_results'] = self._extract_numbers(result['selected_results'])
return result
def _parse_json_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
try:
json_match = re.search(r'\{.*\}', response, re.DOTALL)
if json_match:
json_str = json_match.group(0)
parsed_json = json.loads(json_str)
return {k: v for k, v in parsed_json.items()
if k in ['decision', 'reasoning', 'selected_results', 'response']}
except json.JSONDecodeError:
pass
return {}
def _parse_unstructured_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
result = {}
lines = response.split('\n')
current_section = None
for line in lines:
section_match = re.match(r'(.+?)[:.-](.+)', line)
if section_match:
key = self._match_section_to_key(section_match.group(1))
if key:
current_section = key
result[key] = section_match.group(2).strip()
elif current_section:
result[current_section] += ' ' + line.strip()
if 'selected_results' in result:
result['selected_results'] = self._extract_numbers(result['selected_results'])
return result
def _parse_implicit_response(self, response: str) -> Dict[str, Union[str, List[int]]]:
result = {}
decision = self._infer_decision(response)
if decision:
result['decision'] = decision
numbers = self._extract_numbers(response)
if numbers:
result['selected_results'] = numbers
if not result:
result['response'] = response.strip()
return result
def _fallback_parsing(self, response: str) -> Dict[str, Union[str, List[int]]]:
return {
'decision': self._infer_decision(response),
'reasoning': None,
'selected_results': self._extract_numbers(response),
'response': response.strip()
}
def _post_process_result(self, result: Dict[str, Union[str, List[int]]]) -> Dict[str, Union[str, List[int]]]:
if result['decision'] not in ['refine', 'answer']:
result['decision'] = self._infer_decision(str(result))
if not isinstance(result['selected_results'], list):
result['selected_results'] = self._extract_numbers(str(result['selected_results']))
result['selected_results'] = result['selected_results'][:2]
if not result['reasoning']:
result['reasoning'] = f"Based on the {'presence' if result['selected_results'] else 'absence'} of selected results and the overall content."
if not result['response']:
result['response'] = result.get('reasoning', 'No clear response found.')
return result
def _match_section_to_key(self, section: str) -> Optional[str]:
for key, pattern in self.section_identifiers:
if re.search(pattern, section, re.IGNORECASE):
return key
return None
def _extract_numbers(self, text: str) -> List[int]:
return [int(num) for num in re.findall(r'\b(?:10|[1-9])\b', text)]
def _infer_decision(self, text: str) -> str:
text = text.lower()
refine_score = sum(text.count(keyword) for keyword in self.decision_keywords['refine'])
answer_score = sum(text.count(keyword) for keyword in self.decision_keywords['answer'])
return 'refine' if refine_score > answer_score else 'answer'
def _is_valid_result(self, result: Dict[str, Union[str, List[int]]]) -> bool:
return bool(result.get('decision') or result.get('response') or result.get('selected_results'))
def _clean_query(self, query: str) -> str:
"""Clean and validate search query"""
query = re.sub(r'["\'\[\]]', '', query)
query = re.sub(r'\s+', ' ', query)
return query.strip()[:100]
def _validate_time_range(self, time_range: str) -> str:
"""Validate time range value"""
valid_ranges = ['d', 'w', 'm', 'y', 'none']
time_range = time_range.lower()
return time_range if time_range in valid_ranges else 'none'